Анатомия и физиология

Анатомия и физиология как науки, их взаимосвязь между ними

Анато́мия (от греч. ἀνα- — вновь, сверху и τέμνω — «режу», «рублю», «рассекаю») — раздел биологии и конкретно морфологии, изучающий строение тела организмов и их частей на уровне выше клеточного. Анатомия как наука (собственно предмет анатомии) изучает не только внешнее строение организма в целом, но и внутреннюю форму и структуру органов, входящих в его состав. Современная анатомия с помощью микроскопии срезов анатомических препаратов смогла раздвинуть горизонты познания и выделить ещё один аспект морфологической науки — микроскопическую анатомию. В свою очередь микроскопическая анатомия тесно связана с наукой о тканях (гистологией от греч. hystós — ткань), изучающей закономерности развития и строения тканей, а также с наукой о клетке (цитологией от греч. cýtos — клетка), которая исследует закономерности развития, строения и деятельности отдельных клеток, из которых построены ткани и органы исследуемого макроорганизма. Взятые вместе анатомия, гистология, цитология и эмбриология (от греч. émbryon — зародыш) в совокупности представляют общую науку о форме, развитии и строении организма — морфологию (от греч. morphé — форма)[1].

Методы анатомического исследования

Основными методами анатомического исследования являются наблюдение, осмотр тела, вскрытие ( от греч. Anatome- рассечение, расчленение), а также наблюдение, изучение отдельного органа или групп органов (макроскопическая анатомия), их внутреннего строения ( микроскопическая анатомия). С появлением микроскопов из анатомии выделилась гистология (от греч. histos – ткань) – учение о тканях и цитология ( от греч. cytos – клетка) – наука о строении и функции клетки.

Все методы делят на 2 группы:

Ι- на трупе, Ι Ι- на живом человеке.

Ι группа – на труппе:

1. Препарирование – рассечение с помощью простых инструментов (скальпель, пила) под контролем невооруженных глаз или с помощью лупы – позволяет изучить строение и топографию органов.

2. Вымачивание – труп вымачивают в жидкости для выделения скелета и изучения его строения.

3. Распиливание замороженных трупов – предоставляет возможность изучить взаимоотношение органов.

4. Коррозия – вводят в полости или просвет сосудов жидкий металл или пластмассу (затвердевающие вещества), затем разрушают ткани органов крепкими растворами кислот или щелочей, после чего остается слепок изучаемого образования

5. Инъекция – в полости вводят красящие вещества, а затем оставляют ткани, и они (бронхи, сосуды) становятся доступными для изучения.

6. Микроскопия – структуры органов спомощью увеличительных приборов.

‖ группа – на живом человеке.

1. Соматоскопия – осмотр тела (конституция тела, искривление позвоночника и т. Д.)

2. Антропометрия – измерение частей тела, изучение внешних форм и пропорций человека.

3. Рентгеноскопия и рентгенография – изучают структуру органов и их топографию.

4. Эндоскопия– с помощью световой техники изучают внутреннюю поверхность полых органов.

5. Компьютерная томография – метод применяется с 1968 года. Вокруг исследуемого объекта помещается рентгенизлучатель, а детектор регистрирует изображение разных срезов исследуемого объекта.

6. Ультразвуковая эхолокация– метод основан на излучении ультразвука и регистрации сигналов, отраженных от поверхностей раздела тканей, имеющих разную эхоплотность, а потому по разному поглощающих и отражающих ультразвуковые волны. Метод дает важную информацию о состоянии внутренних органов ( печени, селезенки, почек, щитовидной железы и др.)

7. Ядерно-магнитный резонанс – метод основан на избирательном поглощении веществом электромагнитного излучения, позволяет изучать структуры и молекулярное движение в разных веществах, механизм действия биологически активных веществ, а также получить изображение объекта в любом сочетании.

Физиология (от греч. φύσις — природа и греч. λόγος — знание) — наука о сущности живого и жизни в норме и при патологиях, то есть о закономерностях функционирования и регуляции биологических систем разного уровня организации, о пределах нормы жизненных процессов (см. нормальная физиология) и болезненных отклонений от неё (см.патофизиология). Физиология представляет собой комплекс естественнонаучных дисциплин, изучающих как жизнедеятельность целостного организма (см. общая физиология), так и отдельных физиологических систем и процессов (напр. физиология локомоций), органов, клеток, клеточных структур (частная физиология). Как важнейшая синтетическая отрасль знаний физиология стремится раскрыть механизмы регуляции и закономерности жизнедеятельности организма, его взаимодействия с окружающей средой. Физиология изучает основное качество живого — его жизнедеятельность, составляющие её функции и свойства, как в отношении всего организма, так и в отношении его частей. В основе представлений о жизнедеятельности находятся знания о процессах обмена веществ, энергии и информации. Жизнедеятельность направлена на достижения полезного результата и приспособления к условиям среды.

Анатомия и физиология

Цель урока: знать определение предмета,задачи,значение в клинической практике,основные методы изучения, иметь представление о развитии науки анатомии

План изложения нового материала

1. Наука анатомия, виды и связь с другими науками

2. История развития науки

3. Методы,применяемые в изучении науки

4. Потребности человека

5. Условные плоскости, оси, отделы человека

Анатомия — это наука о формах и строении органов, систем органов и человеческого организма в целом, и постоянном взаимодействии с внешней средой , происходит от греч. anatemno,что означает рассекаю, расчленяю. Организм человека представляет собой очень сложную живую биологическую систему. Различают анатомию несколько видов:

Порок развития это стойкие морфологические или функциональные изменения органа или организма, возникающие в результате нарушения развития зародыша, плода или дальнейшего формирования органов после рождения ребенка. Порок развития, который приводит к обезображиванию части тела и обнаруживается при внешнем осмотре, называют уродством.
Аномалия развития— это стойкое отклонение в строении органа или системы органов, не сопровождающееся функциональными нарушениями в обычных условиях, но нередко являющееся причиной дефектов, заболеваний от воздействий внешних, генетических факторов, передаваемыми по наследству от родителей.

Читайте также:
Простуда - как быстро вылечиться в домашних условиях?

Физиология — это наука о функциях живых биологических систем (отдельных клеток, органов, систем органов и организма в целом), о процессах, протекающих в них, и механизмах их регуляции.

Примером может служить деятельность пищеварительной системы, в составе которой каждый орган, благодаря особенностям строения, выполняет строго определенную функцию, а совместная деятельность всех органов обеспечивает единый процесс пищеварения.

Физиология с анатомией составляют основу современных медико-биологических дисциплин , теоретическую основу медицинских знаний. Основные задачи анатомии и физиологии — формирование комплексного представления о строении человеческого организма, функциях его органов и систем в целях воздействия на них для сохранения и укрепления здоровья человека, а также устранения возникающих при заболеваниях отклонений от нормальных процессов жизнедеятельности.

2. История анатомии

Сведения о строении тела человека относятся к 5-4 векам до новой эры. Основоположником анатомии, отцом ” медицины” является Гиппократ (460 — 377 г.г до н.э) . Его научные труды объединены в “Гиппократовы труды”. Он изучал строение желез, кишечника, прорезывание зубов у детей,описал несколько костей черепа, строение сердца, считая, что воздух охлаждается в сердце.
Клавдий Гален (130-200г.г.) обобщил ,систематизировал анатомические сведения, описал их в 16 книгах. Классифицировал оболочки артерий, описал мышцы спины, нервы блуждающий, лицевой , оболочки мозга. Составил круг кровообращения с центральным органом печень.
Анатомия Средневековья – застойные времена из-за инквизиции церкви, запрещалось вскрытие трупов. Но на Востоке наука развивалась свободно, великий таджикский врач ,философ Али Ибн Сина (Авиценна) 980-1037гг, ,автор более 100 произведений по разным наукам, написал медицинский труд “Канон врачебной науки” 1002г.. Авиценна проанализировал все сведения по анатомии и физиологии, открытые древнегреческими учеными, проводя собственные наблюдения.
Анатомия эпохи Возрождения. Гениальный художник Леонардо да Винчи (1452-1519гг) является основоположником пластической анатомии. Описал изгибы позвоночника, щитовидную железу, классифицировал мышцы. Церковь преследовала эго открытия, в медицине его открытия стали применяться значительно позднее.
Андрей Везалий (1514-1564) – отец описательной анатомии. Он вскрывал и препарировал трупы ,делал зарисовки костей, мышц, внутренних органов, сосудов, нервов. Издал небольшой атлас “Анатомические таблицы” 1538г.и знаменитый труд “О строении тела человека” 1543г.
Ученик Везалия Г.Фаллопий (1523-1562) описал маточные трубы, а В.Евстахий (1510-1574) обнаружил слуховую трубу.
В Голландии в середине 17 века был организован анатомический музей бальзамированных трупов. Петр первый купил коллекцию препаратов и в Санкт -Петербурге до сих пор хранятся в Кунсткамере.
Развитие анатомии в России в XVII—XIX вв. До 17 века в России как медицинской науки не существовало, знатных больных лечили врачи-иностранцы. Возникла необходимость в подготовке отечественных врачебных кадров. В 1620 г. в Москве Аптекарским приказом стали изготовляться лекарства для армии. В 1654 году создается первая “Школа русских лекарей”,где анатомия преподавалась по учебнику А.Везалия. В 1707 году в Москве по указу Петра первого открыта лекарская школа, затем их открыли в Петербурге (1717),Крондштадте (1719),где главным предметом была анатомия. Она изучалась по первому анатомическому атласу Мартина Ильича Шеина из 26 таблиц, учебник переведен с латинского языка на русский язык
В 1782 г М.Шумлянский защитил диссертацию “О строении почек”,описал строение нефрона, капиллярное кровообращение.
В 1786 году при медико-хирургических училищах открываются кафедры “анатомии ,физиологии, хирургии”. П.А Загорский (1764-1846) подготовил первый учебник по анатомии на русском языке .А его ученик И.В.Буяльский (1789-1866) совершенствовал методы препарирования , бальзамирования, инъекции написал атлас анатомии человека.
Н.И.Пирогов (1810-1881) – основоположник топографической анатомии. Создал атлас “Иллюстрированная топографическая анатомия распилов, проведенных в трех направлениях через замороженное тело” (1852-1859).
Развитие анатомии в советский период и настоящее время. В советский период открыты высшие учебные заведения, шел расцвет анатомии как науки. Анатомия стала изучаться на микроскопическом, рентгеновском, биохимическом, функциональном уровне.
Выдающими анатомы этого периода были В.Н.Тонков изучал коллатеральное кровообращение, В.П.Воробьев изучал периферическую и вегетативную нервную систему, создал пятитомный “Атлас анатомии человека” (1938-1946), Р.Д.Синельников продолжил идеи Воробьева и издал оригинальный “Атлас анатомии человека”, пересдавался шесть раз, является настольной книгой и в настоящее время, М.Г.Привес изучал лимфатическую систему, применив рентгенографию. М.Р.Сапин (род.1940г) исследует кровеносную систему, иммунную, лимфатическую системы, и многие другие.
Первый период в развитии анатомии до А.Везалия. Второй период с 16 века и до наших дней.
Развитие физиологии проходило параллельно анатомии. Аристотель (384-22гг до н.э.)отмечал, что сердце отвечает за движение крови.
Гиппократ описал четыре жидкости в организме (кровь,слизь,желчь,черная желчь),четыре типа темперамента.
Клавдий Гален изучал головной мозг и пришел к убеждению, что это центр мышления.
Вильям Гарвей (1578-1657) открыл большой круг кровообращения (1628) ,законы движения крови.
Рене Декард (1596-1650) предположил о рефлекторном принципе работы центральной нервной системы.
Основоположником русской физиологии считается И.М.Сеченов (1829-1905). Уделял внимание рефлекторным дугам, написал “Рефлексы головного мозга”,процессы возбуждения и торможения.
И.П.Павлов (1849-1936) 50 лет работал в области пищеварительной системы, открыл условные рефлексы, проводя опыты на животных.
Изучал высшую нервную деятельность. За свои открытия был удостоен Нобелевской премии в 1904 году.
Анатомия как наука включает цитологию -наука о клетке, гистологию – науку о тканях, эмбриологию – науку о развитии зародыша.

Читайте также:
Лечебно-профилактические средства

3.В изучении анатомии применяются методы:

В изучении физиологии используют экспериментальные методы : трансплантация, экстирпация, фистульный метод, катетеризация. Инструментальные методы: электрокардиография, электроэнцефалография, рефлекс, рефлекторная дуга.

4. Потребности человека

Каждый человек для своей жизнедеятельности нуждается в определенных условиях и средствах. Жизнь, активность человека зависит от потребностей, которые необходимо удовлетворять. Потребность-это нужда организма в чем-либо.. Она объективна, необходима для жизни и развития. Потребности формируются при воспитании и самовоспитании ,культуры. Потребности естественные, социальные, материальные, духовные . Потребности зависят от профиля деятельности. Изучал потребности американский психолог М.Маслоу и создал иерархию человеческих потребностей по уровням в виде пирамиды: физиологические, безопасность и защищенность, групповая привязанность, уважение, эстетический уровень, самоуважение и самоактуализация.

5. Плоскости, оси и основные ориентиры в анатомии

Для определения топографии (местоположения) органов используют трехмерное пространство, позволяющее дать ему объемную характеристику. В этих целях через тело человека условно проводят три плоскости: горизонтальную, сагиттальную и фронтальную.
Горизонтальная плоскость делит тело на верхнюю и нижнюю части, сагиттальная — на правую и левую. Сагиттальная плоскость, разделяющая тело человека на две симметричные половины, называется срединной. Фронтальная плоскость проходит перпендикулярно по отношению к сагиттальной и делит тело на переднюю и заднюю части. Через любую точку на поверхности тела можно провести горизонтальную, сагиттальную и фронтальную плоскости. Для определения направлений движений в суставах условно проводят оси: фронтальную, сагиттальную, вертикальную

Терминология, применяемая в изучении анатомии и физиологии

А n а t о m е – рассечение

Су t u s – клетка

А utopsia – вскрытие трупов

Биопсия – взятие кусочка ткани

Ргох imalis – ближе к туловищу

distalis – дальше от туловища

Ме dialis – ближе к средней линии

lateralis – дальше от средней линии

diaphysis – средняя часть кости

epi physis – конец кости

d ех t ег -правый

С rista – гребень

dorsalis – находящийся ближе к задней поверхности тела

/еп t га lis – находящийся ближе к передней поверхности тела

Топография – взаимное расположение органов

Записать , что изучает каждый вид анатомии

Ответить на вопросы :

1.Дать определения,что такое анатомия, физиология

2.что такое норма, порок развития, уродство?

3.назовите отечественных анатомов и их вклад в изучение дисциплины

4.Каких физиологов вы знаете и их роль в изучении процессов деятельности человеческого организма?

Анатомия и физиология позвоночника

ап1.jpg

Позвоночник человека – это очень непростой механизм, правильная работа которого влияет на функционирование всех остальных механизмов организма.

Позвоночник (от лат. «columna vertebralis», синоним – позвоночный столб) состоит из 32 – 33 позвонков (7 шейных, 12 грудных, 5 поясничных, 5 крестцовых, соединенных в крестец, и 3 – 4 копчиковых), между которыми расположены 23 межпозвоночных диска.

Связочно-мышечный аппарат, межпозвоночные диски, суставы соединяют позвонки между собой. Они позволяют удерживать его в вертикальном положении и обеспечивают необходимую свободу движения. При ходьбе, беге и прыжках эластичные свойства межпозвоночных дисков, значительно смягчают толчки и сотрясения, передаваемые на позвоночник, спинной и головной мозг.

Физиологические изгибы тела создают позвоночнику дополнительную упругость и помогают смягчать нагрузку на позвоночный столб.

Позвоночник является главной опорной структурой нашего тела. Без позвоночника человек не мог бы ходить и даже стоять. Другой важной функцией позвоночника является защита спинного мозга. Большая частота заболеваний позвоночника у современного человека обусловлена, главным образом, его «прямохождением», а также высоким уровнем травматизма.

Отделы позвоночника: В позвоночнике различают шейный, грудной, поясничный отделы, крестец и копчик. В процессе роста и развития позвоночника формируется шейный и поясничный лордозы, грудной и крестцово – копчиковый кифозы, превращающие позвоночник в «пружинящую систему», противостоящую вертикальным нагрузкам. В медицинской терминологии, для краткости, для обозначения шейных позвонков используется латинская буква «С» – С1 – С7, для обозначения грудных позвонков – «Th» – Th1 – Th12, поясничные позвонки обозначаются буквой «L» – L1 – L5.

Шейный отдел. Это самый верхний отдел позвоночного столба. Он отличается особой подвижностью, что обеспечивает такое разнообразие и свободу движения головы. Два верхних шейных позвонка с красивыми названиями атлант и аксис, имеют анатомическое строение, отличное от строения всех остальных позвонков. Благодаря наличию этих позвонков, человек может совершать повороты и наклоны головы.

Грудной отдел. К этому отделу прикрепляются 12 пар рёбер. Грудной отдел позвоночника участвует в формировании задней стенки грудной клетки, которая является вместилищем жизненно важных органов. В связи с этим грудной отдел позвоночника малоподвижен.

Поясничный отдел. Этот отдел состоит из самых массивных позвонков, так как на них лежит самая большая нагрузка. У некоторых людей встречается шестой поясничный позвонок. Это явление врачи называют люмбализацией. Но в большинстве случаев такая аномалия не имеет клинического значения. 8-10 позвонков срастаются, образуя крестец и копчик.

Читайте также:
Д-пантенол мазь - инструкция по применению, показания

Позвонок состоит из тела, дуги, двух ножек, остистого, двух поперечных и четырёх суставных отростков. Между дугой, телом и ножками позвонков находятся позвонковые отверстия, из которых формируется позвоночный канал.

Между телами двух смежных позвонков располагается межпозвонковый диск, состоящий из фиброзного кольца и пульпозного ядра и выполняющий 3 функции: амортизация, удержание смежных позвонков, обеспечение подвижности тел позвонков. Вокруг ядра располагается многослойное фиброзное кольцо, которое удерживает ядро в центре и препятствует сдвиганию позвонков в сторону относительно друг друга.

Фиброзное кольцо имеет множество слоев и волокон, перекрещивающихся в трех плоскостях. В нормальном состоянии фиброзное кольцо образовано очень прочными волокнами. Однако в результате дегенеративного заболевания дисков (остеохондроза) происходит замещение волокон фиброзного кольца на рубцовую ткань. Волокна рубцовой ткани не обладают такой прочностью и эластичностью как волокна фиброзного кольца. Это ведет к ослаблению межпозвоночного диска и при повышении внутридискового давления может приводить к разрыву фиброзного кольца.

Значительное повышение давления внутри межпозвоночных дисков может привести к разрыву фиброзного кольца и выходу части пульпозного ядра за пределы диска. Так формируется грыжа диска, которая может приводить к сдавлаванию нервных структур, что вызывает, в свою очередь появление болевого синдрома и неврологических нарушений.

Связочный аппарат представлен передней и задней продольными, над – и межостистыми связками, жёлтыми, межпоперечными связками и капсулой межпозвонковых суставов. Два позвонка с межпозвоночным диском и связочным аппаратом представляют позвоночный сегмент.

При разрушении межпозвоночных дисков и суставов связки стремятся компенсировать повышенную патологическую подвижность позвонков (нестабильность), в результате чего происходит гипертрофия связок.Этот процесс ведет к уменьшению просвета позвоночного канала, в этом случае даже маленькие грыжи или костные наросты (остеофиты) могут сдавливать спинной мозг и корешки.

Такое состояние получило название стеноза позвоночного канала. Для расширения позвоночного канала производится операция декомпрессии нервных структур.

В позвоночном канале расположен спинной мозг и корешки «конского хвоста». Спинной мозг начинается от головного мозга и заканчивается на уровне промежутка между первым и вторым поясничными позвонками коническим заострением. Далее от спинного мозга в канале проходят спинномозговые нервные корешки, которые формируют так называемый «конский хвост».
Спинной мозг окружён твёрдой, паутинной и мягкой оболочками и фиксирован в позвоночном канале корешками и клетчаткой. Твердая мозговая оболочка формирует герметичный соединительнотканный мешок (дуральный мешок), в котором расположены спинной мозг и несколько сантиметров нервных корешков.Спинной мозг в дуральном мешке омывает спинномозговая жидкость (ликвор).

От спинного мозга отходит 31 пара нервных корешков. Из позвоночного канала нервные корешки выходят через межпозвоночные (фораминарные) отверстия, которые образуются ножками и суставными отростками соседних позвонков.

У человека, так же как и у других позвоночных, сохраняется сегментарная иннервация тела. Это значит, что каждый сегмент спинного мозга иннервирует определенную область организма.

Например, сегменты шейного отдела спинного мозга иннервируют шею и руки, грудного отдела – грудь и живот, поясничного и крестцового – ноги, промежность и органы малого таза (мочевой пузырь, прямую кишку).

По периферическим нервам нервные импульсы поступают от спинного мозга ко всем органам нашего тела для регуляции их функции. Информация от органов и тканей поступает в центральную нервную систему по чувствительным нервным волокнам.

Большинство нервов нашего организма имеют в своем составе чувствительные, двигательные и вегетативные волокна.
Спинной мозг имеет два утолщения: шейное и поясничное. Поэтому межпозвоночные грыжи шейного отдела позвоночника более опасны, чем поясничного.

Врач, определяя в какой области тела, появились расстройства чувствительности или двигательной функции, может предположить, на каком уровне произошло повреждение спинного мозга.

©2010-2013 Федеральный центр травматологии, ортопедии и эндопротезирования

Нормальная анатомия и физиология мочевого тракта

Что такое мочевыделительная система и как она работает?

Органы мочевыделительной системы

Мочевой тракт представляет собой непрерывную систему полых органов, основной функцией которой является образование, сбор, транспортировка, хранение и выведение мочи.

Мочевыделительная система делится на верхний и нижний отделы. Верхняя мочевыделительная система состоит из почек и трубки, называемой мочеточником, которая транспортирует мочу из почки в мочевой пузырь.

Нижняя мочевыделительная система состоит из мочевого пузыря и другой трубки, называемой уретрой, которой заканчивается мочевыделительная система, она транспортирует мочу из мочевого пузыря наружу.

Функция мочевыделительной системы состоит в том, чтобы обеспечить выведение продуктов метаболизма из организма человека, регулировать водно-солевой баланс, а также хранить и транспортировать мочу.

Мочевая система работает в комплексе с легкими, кожей и кишечником, поддерживая баланс химических веществ и воды в организме. Взрослые выделяют от 800 до 2000 миллилитров мочи в сутки при обычном питьевом режиме потребления воды в сутки, а это 1.5-2 литра. Некоторые факторы влияют на повышение образования мочи в организме. Например, некоторые виды лекарств, такие как диуретики (мочегонные препараты), которые иногда используются для лечения высокого кровяного давления. Напитки, такие как кофе и алкоголь, также могут вызвать увеличение количества выделяемой мочи у некоторых людей.

Верхняя мочевыделительная система

Почки

Почки

Почки – это парный орган, расположены они по обе стороны от позвоночника в забрюшинном пространстве чуть выше поясничной области и имеют вид большой фасоли и по размеру примерно с кулак. Правая почка располагается немного ниже левой из-за положения печени. У взрослого человека средняя почка составляет 10 см в длину, 6 см в ширину и 3 см в толщину, а весит около 120-200 г. Левая обычно немного больше правой почки.

Читайте также:
Симптомы болей в паху - самые распространенные заболевания и их симптоматика

Каждая почка покрыта фиброзной капсулой, которая защищает почку от травмы. Все болевые ощущения связаны с этой капсулой: сам орган не имеет болевых рецепторов. При повреждении, растяжении капсулы появляется боль разного характера и интенсивности.

Ткань почки или паренхима состоит из внешнего (коркового) и внутреннего (мозгового) слоев.

Кровь поступает в почку через почечную артерию (ветвь аорты) и фильтруется через микроскопические структурные рабочие единицы почки – нефроны. Каждая почка содержит около миллиона нефронов. Их задачей и является фильтрация крови и выработка мочи. Каждый нефрон состоит из шара, образованного мелкими кровеносными капиллярами (клубочек), он окружен куполообразной структурой, клубочковой капсулой (или капсулой Боумена), и небольшой трубки, называемой почечным канальцем. Здесь осуществляется фильтрация плазмы крови, которая приводит к образованию мочи.

Система накопления мочи состоит из малых почечных чашечек, которые, сливаясь между собой по 2—3, образуют большую почечную чашечку, а они в свою очередь образуют почечную лоханку. Почечная лоханка переходит непосредственно в мочеточник.

Все функции, обычно выполняемые двумя почками, могут быть адекватно выполнены одной здоровой почкой. Некоторые люди рождаются только с одной почкой, а другие предпочитают пожертвовать одну почку для трансплантации человеку с почечной недостаточностью.

Основная функция почек заключается в том, чтобы поддерживать правильный баланс воды и минералов (включая электролиты) в организме.

Важной функцией почек является регулирование баланса жидкости путем выведения избыточного количества воды в виде мочи при сохранении необходимого количества воды в организме, что является необходимым для жизни. Когда почки теряют способность удалять избыточное количество воды – появляются отеки.

Почки регулируют баланс минералов и таких веществ, как натрий, калий, кальций, фосфор, магний и бикарбонат и поддерживают нормальный состав крови. Изменения уровня натрия могут влиять на психическое состояние человека, в то время как изменения уровня калия могут иметь серьезные неблагоприятные последствия и вызывать нарушения в работе сердца, а также функционировании мышечного аппарата. Поддержание нормального уровня кальция и фосфора необходимо для здоровья костей и зубов.

Дополнительные функции почек включают в себя:

  • Фильтрация и выведение из организма отходов переработки пищевых продуктов, лекарственных препаратов и вредных веществ (токсинов).
  • Креатинин и мочевина – это два важных побочных продукта работы почек, которые можно легко измерить в крови. Их значения в анализах крови отражают функцию почек. Когда появляются нарушения в работе почек, значение креатинина и мочевины повышаются.
  • Регулирование артериального давления – почки производят различные гормоны (ренин, ангиотензин, альдостерон, простагландины и т.д.) которые помогают отрегулировать количество воды и соли, уровень которых играет жизненно важную роль в поддержании кровяного давления. Нарушение выработки гормонов и регуляции содержания соли и воды у пациента, например, с почечной недостаточностью может привести к повышению артериального давления.
  • Регулирование объема крови
  • Регулирование рН крови
  • Преобразование витамин D в активную форму, которая необходима для всасывания кальция из еды, роста костей и зубов и поддержания их здоровья. Снижение уровня активного витамина D приводит к снижению скорости роста костей. Замедление роста может быть признаком заболевания почек у детей.

Эритропоэтин – это гормон, вырабатываемый в почках, он играет важную роль в производстве эритроцитов. При почечной недостаточности снижается продукция эритропоэтина, что в свою очередь приводит к снижению уровня гемоглобина (анемии). Это является причиной того, что у пациентов с почечной недостаточностью количество гемоглобина не улучшается, несмотря на прием препаратов железа и витаминов.

Мочеточники

Мочеточники

Это фибромышечные трубки, которые отводят мочу из почечной лоханки в мочевой пузырь, имеют длину около 25-30 см и ширину 6-8 мм. Они входят в мочевой пузырь сзади и под углом, заканчиваясь в просвете мочевого пузыря в виде отверстий – устья мочеточников. Нижний отдел мочеточника сжимается стенкой мочевого пузыря пассивно во время хранения мочи и динамически во время опорожнения. По сути это клапан, который предотвращает пузырно-мочеточниковый рефлюкс (т.е. останавливает мочу от обратного заброса в почки). Стенка мочеточника состоит из трех слоев, включая слой мышц, который помогает ему сокращаться и продвигать мочу из почки в мочевой пузырь. Небольшие порции мочи поступают в мочевой пузырь из мочеточников примерно каждые 10-15 секунд.

По длине мочеточника есть три физиологических сужения: на уровне перехода лоханки в мочеточник, место перекреста с общими подвздошными сосудами и в толще стенки мочевого пузыря. При мочекаменной болезни в местах сужения мочеточников могут застревать камни, вызывая почечную колику.

Как очищается кровь и образуется моча?

Здоровые почки фильтруют около 100 мл крови каждую минуту, удаляя отходы и дополнительную воду, чтобы образовать в конечном итоге мочу.

Разделяют три основных этапа формирования мочи:

  • фильтрация
  • реабсорбция
  • секреция

В процессе очищения крови, почки удерживают все необходимые вещества и избирательно удаляют лишнюю жидкость и отходы жизнедеятельности организма.

  • за сутки почки образуют 140-180 литров первичной мочи, за 24 часа вся циркулирующая кровь очищается несколько раз, с возрастом эти процессы замедляются
  • процесс очистки происходит в небольших фильтрующих блоках, известных как нефроны.
  • каждая почка содержит около миллиона нефронов, и каждый нефрон состоит из клубочков и канальцев.
  • клубочки – это фильтры с очень мелкими порами, характерными для селективной фильтрации. Вода и малогабаритные вещества легко фильтруются через них. Но более крупные эритроциты, лейкоциты, тромбоциты, белок и т. д. не может пройти через эти поры. Поэтому такие клетки обычно не видны в моче здоровых людей.
  • первая стадия образования мочи происходит в клубочках, где моча отфильтровывается в количестве 100-125 мл в минуту, таким образом за 24 часа образуется 140-180 литров первичной мочи. Она содержит не только отходы производства и токсичные вещества, но глюкозу и другие полезные вещества.
  • Каждая почка выполняет процесс реабсорбции (обратного всасывания). Из жидкости, поступающей в канальцы, 99% жидкости избирательно реабсорбируется и только оставшиеся 1% жидкости выводится в виде вторичной мочи. Благодаря этому процессу все необходимые вещества реабсорбируются в канальцах, в то время как 1-2 литра жидкости содержащей отходы и другие вредные вещества выводятся из организма в виде вторичной мочи.
Читайте также:
Кандидозы у мужчин - фото, симптомы, лечение

Таким образом, почки обладают фильтрационной и концентрационной способностью.

Может ли быть изменение объема мочи у человека со здоровыми почками?

ДА. Количество потребляемой воды и атмосферная температура являются основными факторами, которые определяют объем мочи, который выделяет нормальный человек.

В зависимости от количества потребляемой жидкости изменяется количество выделяемой мочи: чем больше жидкости поступает в организм, тем больше ее выделяется и тем моча менее концентрированная, цвет ее становится светлым, вплоть до прозрачного. Если же количество жидкости снижается, то и количество выделяемой мочи становится меньше, она будет более концентрированной, а цвет темно-соломенным.

В летние месяцы из-за потоотделения, вызванного высокой температурой окружающей среды, объем мочи уменьшается. В зимние месяцы все наоборот – низкая температура, отсутствие потоотделения и больше мочи.

У человека с нормальным потреблением воды, если объем мочи составляет менее 500 мл или более 3000 мл, это может свидетельствовать о том, что почки нуждаются в более пристальном внимании и дополнительном обследовании.

Запишитесь на прием к гинекологу по телефону
8(812)952-99-95 или заполнив форму online – администратор свяжется с Вами для подтверждения записи

keyhole

Центр “Уроклиник” гарантирует полную конфиденциальность

Нижняя мочевыделительная система

Мочевой пузырь

Мочевой пузырь

Мочевой пузырь – это полый мышечный орган, который служит резервуаром для мочи, находится сразу за лобковой костью. У мужчин к мочевому пузырю сзади прилежат семенные пузырьки, семявыносящие протоки, мочеточники и прямая кишка. У женщин между мочевым пузырем и прямой кишкой расположены матка и проксимальная часть влагалища.

Объем мочевого пузыря может значительно изменяться в зависимости от его наполнения. Физиологическая емкость мочевого пузыря в среднем составляет 250–350 мл, анатомическая — до 1000 мл.

Стенка мочевого пузыря представлена: слизистой, подслизистой основой, мышечной и наружной адвентициальной оболочкой. Серозная оболочка выстилает только дно мочевого пузыря.

Слизистая оболочка мочевого пузыря обладает способностью оставаться интактной при наличии в мочевом пузыре мочи – довольно агрессивной жидкости.

Мочевой пузырь состоит из верхушки, тела, дна и нижней узкой части – шейки. На дне мочевого пузыря находится треугольная область, известная как мочепузырный треугольник или треугольник Льето. Моча поступает в мочевой пузырь из мочеточников в самой верхней части треугольника и выходит из мочевого пузыря через уретру в самой нижней его части.

Шейка мочевого пузыря представляет собой воронкообразное расширение в нижней части мочевого пузыря, которое затем соединяется с уретрой. Она имеет длину 2-3 см и образует мышечную полосу вокруг уретры, известную как внутренний сфинктер. Сфинктер обычно плотно закрыт, и предотвращает утечку мочи из мочевого пузыря. Когда человек решает выпустить мочу, сфинктер расслабляется, и моча вытекает из мочевого пузыря в уретру.

Мужская уретра

Мужская уретра

У мужчин мочеиспускательный канал представляет собой трубку длиной 15–22 см, начинается от шейки мочевого пузыря и заканчивается наружным отверстием на головке полового члена (меатус). Уретра у мужчин несет функцию транспортировки мочи и выделения эякулята, который поступает через семявыносящие протоки.

Мужской мочевой канал состоит из нескольких отделов:

  • Простатическая часть проходит через предстательную железу, его длина 3–4 см, на этом участке уретры расположен семенной бугорок, открываются семявыносящие протоки и протоки простаты.
  • Мембранозная (перепончатая) часть уретры представляет собой участок от верхушки предстательной железы до луковицы полового члена, длина его составляет 1,5–2 см. Мембранозный отдел уретры окружен поперечнополосатыми мышечными пучками сфинктера.
  • Губчатая или пенильная часть уретры проходит внутри губчатого тела полового члена, открывается на головке наружным отверстием, длина ее около 15 см.

В механизме удержания мочи участвуют два сфинктера: внутренний(1) и наружный(2). Внутренний сфинктер расположен на границе между шейкой мочевого пузыря и началом простатического отдела уретры, наружный сфинктер – перед семенным бугорком.

Женская уретра

Женская уретра намного короче мужской и составляет всего 4 см в длину. Моча выходит из организма через отверстие в мочеиспускательном канале, которое располагается над входом во влагалище.

Читайте также:
Меновазин – инструкция по применению, для чего применяется

Лекция 1. Человек как предмет изучения анатомии и физиологии

Лекция №1 . Анатомия и физиология человека – основные предметы теоретической и практической подготовки медработников. Анатомия и физиология – составные части биологии, относятся к медико-биологическим наукам. Анатомия и физиология – теоретический фундамент клинических дисциплин. Первоосновой медицины является изучение тела человека. «Анатомия в союзе с физиологией – царица медицины» (Гиппократ).

Анатомией называется наука, изучающая форму и строение тела. Термин «анатомия» произошел от греческого слова — anatеmno — разрезать, рассекать. Основная задача анатомии человека — раскрытие структуры человеческого организма в процессе его развития и жизнедеятельности. Основным объектом изучения анатомии является человек. По методам исследования анатомия делится на макроскопическую (изучает строение организма без помощи специальных оптических приборов), и микроскопическую (с использованием микроскопа и других оптических приборов).

Изучение строения тела человека по системам (костной, мышечной, и др.), называется систематической или описательной анатомией.

Топографическая (хирургическая) анатомия изучает строение тела человека с учетом положения (топографии) органов по отношению к полостям тела (голотопия), скелету (скелетотопия) и взаиморасположение органов друг по отношению к другу (синтопия).

Пропорции и внешние формы тела человека изучает пластическая анатомия. При изучении строения тела человека широко используются данные сравнительной анатомии, изучающей строение животных в филогенезе (в процессе эволюции). Функциональная анатомия рассматривает структуры организма в связи с выполняемыми ими функциями.

Из микроскопической анатомии выделились гистология (учение о тканях) и цитология (учение о клетке).

Возрастная анатомия изучает развитие организма после рождения — постнатальный период развития), в котором выделяют науку о старении — геронтологию.

Современную анатомию называют функциональной, так как она рассматривает строение человека в связи с его функциями.

Основными методами исследования в анатомии являются: секционный, препаровочный, инъекционный, коррозионный, рентгеновский, эндоскопический, томографический, макромикроскопический, биометрический и другие методы.

Физиология человека изучает функции человеческого организма, на которых основывается современная медицина. Необходимо отметить, что функции организма человека невозможно понять без знания его анатомии, равно как нельзя представить себе закономерности строения человека без изучения функций. Физиологию, как и другие науки, характеризует ее предмет и методы. Предметом физиологии является изучение общих и частных механизмов деятельности целостного организма.

Метод физиологии — экспериментальный. Это означает, что физиолог не ограничивается простым наблюдением за течением жизненного процесса, он активно вмешивается в этот процесс.

Воздействуя на организм теми или иными способами, физиолог исследует реакции различных систем организма на эти воздействия, делая свои выводы в точном соответствии с фактическими данными, полученными в результате опыта.

Основные методы исследования в физиологии:

  • метод экстирпации (удаление) органа;
  • фистульный метод (введение в полый орган трубки и закрепление ее на коже);
  • метод перерезки нерва (денервация);
  • инструментальный метод (применение электрокардиографа, электроэнцефалографа, вживление электродов и др.);
  • методы острого и хронического физиологического эксперимента;
  • метод перфузии питательных веществ изолированных органов;
  • вариационно-статистические методы с применением компьютерной техники.

Функциональные изменения в больном организме изучает патологическая физиология, а морфологические — патологическая анатомия. Анализируя особенности строения тела человека и его функции, анатомия и физиология являются не только науками аналитическими, но и синтетическими, составляя фундамент медицины.

Положение человека в природе . Человек – часть биосферы, продукт её эволюции, поэтому состояние его здоровья находятся в тесной зависимости от состояния окружающей среды.

Среду обитания человека схематически можно изобразить следующим образом:

Среда обитания человека

Среда обитания человека

Как детище земной биосферы человек приспособлен к жизни только в её условиях, но в отличие от других видов человек легко адаптируется к окружающей среде обитания не только пассивно, но и активно (создавая себе жилище, одежду и другие блага).

” Антропогенез объясняет место современного человека (Homo sapiens) в зоологической системе. По принятой классификации для систематики животного мира, разработанной на основе достижений палеонтологии, анатомии, сравнительной анатомии, биологии и эмбриологии, человек относится к типу хордовых, подтипу позвоночных, классу млекопитающих, отряду приматов, подотряду обезьян, надсемейству антропоморфных, семейству гоминид. ” [1978 Краев А В – Анатомия человека Том 1]

Анатомия и физиология как науки . Первейшей потребностью организма человека является сохранение его жизни и здоровья. Отсутствие болезней, физических дефектов является одним из условий счастья человека и полноты жизни.

Чтобы сохранить здоровье нужно изучать свой организм, процессы, происходящие в нём и условия предупреждающие болезни.

Развитие наук, изучающих человеческий организм, позволяет разрабатывать эффективные методы лечения нарушений деятельности организма и проводить борьбу с инфекционными заболеваниями.

Анатомия человека – наука о строении форм человеческого организма, его органов и образующих их тканей с учётом возрастных, половых и индивидуальных особенностей. Она выявляет взаимосвязь между формой и структурой органов и строением человека в целом.

Физиология человека – наука о процессах жизнедеятельности, о функциях и механизмах регуляции в клетках и тканях, органах, системах органов и в целом организме человека.

Жизненный цикл клетки отражает все закономерные структурно-функциональные изменения, происходящие с клеткой во времени. Жизненный цикл – это время существования клетки от момента ее образования путем деления материнской клетки до собственного деления или естественной гибели.

У клеток сложного организма (например, человека) жизненный цикл клетки может быть различным. Высокоспециализированные клетки (эритроциты, нервные клетки, клетки поперечнополосатой мускулатуры) не размножаются. Их жизненный цикл состоит из рождения, выполнения предназначенных функций, гибели (гетерокаталитической интерфазы).

Читайте также:
Внутричерепное кровоизлияние у новорожденных

Важнейшим компонентом клеточного цикла является митоти-ческий (пролиферативный) цикл. Он представляет собой комплекс взаимосвязанных и согласованных явлений во время деления клетки, а также до и после него. Митотический цикл – это совокупность процессов, происходящих в клетке от одного деления до следующего и заканчивающихся образованием двух клеток следующей генерации. Кроме этого, в понятие жизненного цикла входят также период выполнения клеткой своих функций и периоды покоя. В это время дальнейшая клеточная судьба неопределенна: клетка может начать делиться (вступает в митоз) либо начать готовиться к выполнению специфических функций.

Митоз – это основной тип деления соматических эукариоти-ческих клеток. Процесс деления включает в себя несколько последовательных фаз и представляет собой цикл. Его продолжительность различна и составляет у большинства клеток от 10 до 50 ч. При этом у клеток тела человека продолжительность самого митоза составляет 1–1,5 ч, в2-периода интерфазы – 2–3 ч, S-периода интерфазы – 6—10 ч.

2. Биологическое значение жизненного цикла

Обеспечивает преемственность генетического материала в ряду клеток дочерних генераций; приводит к образованию клеток, равноценных как по объему, так и по содержанию генетической информации.

Основные стадии митоза.

1. Редупликация (самоудвоение) генетической информации материнской клетки и равномерное распределение ее между дочерними клетками. Это сопровождается изменениями структуры и морфологии хромосом, в которых сосредоточено более 90 % информации эукариотической клетки.

2. Митотический цикл состоит из четырех последовательных периодов: пресинтетического (или постмитотического) G1, синтетического S, постсинтетического (или премитотического) G2 и собственно митоза. Они составляют автокаталитическую интерфазу (подготовительный период).

Фазы клеточного цикла:

1) пресинтетическая (G1). Идет сразу после деления клетки. Синтеза ДНК еще не происходит. Клетка активно растет в размерах, запасает вещества, необходимые для деления: белки (гистоны, структурные белки, ферменты), РНК, молекулы АТФ. Происходит деление митохондрий и хлоропластов (т. е. структур, способных к ауторепродукции). Восстанавливаются черты организации интерфазной клетки после предшествующего деления;

2) синтетическая (S). Происходит удвоение генетического материала путем репликации ДНК. Она происходит полуконсервативным способом, когда двойная спираль молекулы ДНК расходится на две цепи и на каждой из них синтезируется комплементарная цепочка.

В итоге образуются две идентичные двойные спирали ДНК, каждая из которых состоит из одной новой и старой цепи ДНК. Количество наследственного материала удваивается. Кроме этого, продолжается синтез РНК и белков. Также репликации подвергается небольшая часть митохонд-риальной ДНК (основная же ее часть реплицируется в G2 период);

3) постсинтетическая (G2). ДНК уже не синтезируется, но происходит исправление недочетов, допущенных при синтезе ее в S период (репарация). Также накапливаются энергия и питательные вещества, продолжается синтез РНК и белков (преимущественно ядерных).

S и G2 непосредственно связаны с митозом, поэтому их иногда выделяют в отдельный период – препрофазу.

После этого наступает собственно митоз, который состоит из четырех фаз.

3. Митоз. Характеристика основных этапов

Деление клетки включает в себя два этапа – деление ядра (митоз, или кариокинез) и деление цитоплазмы (цитокинез).

Митоз состоит из четырех последовательных фаз – профазы, метафазы, анафазы и телофазы. Ему предшествует период, называемый интерфазой (см. характеристику митотического цикла).

1) профаза. Центриоли клеточного центра делятся и расходятся к противоположным полюсам клетки. Из микротрубочек образуется веретено деления, которое соединяет центрио-ли разных полюсов. В начале профазы в клетке еще видны ядро и ядрышки, к концу этой фазы ядерная оболочка разделяется на отдельные фрагменты (происходит демонтаж ядерной мембраны), ядрышки распадаются. Начинается конденсация хромосом: они скручиваются, утолщаются, становятся видимыми в световой микроскоп. В цитоплазме уменьшается количество структур шероховатой ЭПС, резко сокращается число полисом;

2) метафаза. Заканчивается образование веретена деления.

Конденсированные хромосомы выстраиваются по экватору клетки, образуя метафазную пластинку. Микротрубочки веретена деления прикрепляются к центромерам, или кинетохо-рам (первичным перетяжкам), каждой хромосомы. После этого каждая хромосома продольно расщепляется на две хроматиды (дочерние хромосомы) которые оказываются связанными только в участке центромеры;

3) анафаза. Между дочерними хромосомами разрушается связь, и они начинают перемещаться к противоположным полюсам клетки со скоростью 0,2–5 мкм/мин. В конце анафазы на каждом полюсе оказывается по диплоидному набору хромосом. Хромосомы начинают деконденсироваться и раскручиваться, становятся тоньше и длиннее; 4) телофаза. Хромосомы полностью деспирализуются, восстанавливается структура ядрышек и интерфазного ядра, монтируется ядерная мембрана. Разрушается веретено деления. Происходит цитокинез (деление цитоплазмы). В животных клетках этот процесс начинается с образования в экваториальной плоскости перетяжки, которая все более углубляется и в конце концов полностью делит материнскую клетку на две дочерние.

При задержке цитокинеза образуются многоядерные клетки. Это наблюдается при размножении простейших путем шизогонии. У многоклеточных организмов так образуются синцитии – ткани, в которых отсутствуют границы между клетками (поперечно-полосатая мышечная ткань у человека).

Продолжительность каждой фазы зависит от типа ткани, физиологического состояния организма, воздействия внешних факторов (света, температуры, химических веществ) и пр.

4. Нетипичные формы митоза

К нетипичным формам митоза относятся амитоз, эндомитоз, политения.

1. Амитоз – это прямое деление ядра. При этом сохраняется морфология ядра, видны ядрышко и ядерная мембрана. Хромосомы не видны, и их равномерного распределения не происходит. Ядро делится на две относительно равные части без образования митотического аппарата (системы микротрубочек, центриолей, структурированных хромосом). Если при этом деление заканчивается, возникает двухъядерная клетка. Но иногда перешнуровывается и цитоплазма.

Читайте также:
Водянка яичка у мужчин : фото, причины и лечение

Такой вид деления существует в некоторых дифференцированных тканях (в клетках скелетной мускулатуры, кожи, соединительной ткани), а также в патологически измененных тканях. Амитоз никогда не встречается в клетках, которые нуждаются в сохранении полноценной генетической информации, – оплодотворенных яйцеклетках, клетках нормально развивающегося эмбриона. Этот способ деления не может считаться полноценным способом размножения эукариотических клеток.

2. Эндомитоз. При этом типе деления после репликации ДНК не происходит разделения хромосом на две дочерние хроматиды. Это приводит к увеличению числа хромосом в клетке иногда в десятки раз по сравнению с диплоидным набором. Так возникают полиплоидные клетки. В норме этот процесс имеет место в интенсивно функционирующих тканях, например, в печени, где полиплоидные клетки встречаются очень часто. Однако с генетической точки зрения эндомитоз представляет собой геномную соматическую мутацию.

3. Политения. Происходит кратное увеличение содержания ДНК (хромонем) в хромосомах без увеличения содержания самих хромосом. При этом количество хромонем может достигать 1000 и более, хромосомы при этом приобретают гигантские размеры. При политении выпадают все фазы митотического цикла, кроме репродукции первичных нитей ДНК. Такой тип деления наблюдается в некоторых высокоспециализированных тканях (печеночных клетках, клетках слюнных желез двукрылых насекомых). По-литенные хромосомы дрозофил используются для построения цитологических карт генов в хромосомах.

5.1.1. Анатомия и физиология человека. Ткани

Анатомия – частная биологическая наука, изучающая строение человеческого тела, его частей, органов и систем органов. Анатомия изучается параллельно с физиологией, наукой о функциях организма. Наука, изучающая условия нормальной жизнедеятельности, человеческого организма называется гигиеной.

Целостность многоклеточного организма обеспечивается:

– структурным соединением всех частей организма (клеток, тканей, органов и др.),

– взаимосвязью всех частей организма при помощи жидкостей, циркулирующих в его сосудах, полостях и пространствах (гуморальная связь), а также нервной системы, которая регулирует все процессы организма (нервная связь).

Определяющим (детерминирующим) началом организма является генотип, а регулирующими системами — нервная и эндокринная.

Понятие целостности организма человека включает в себя единство психического и соматического. Она является функцией головного мозга, представляющего наиболее высокоразвитую и особым образом организованную материю, способную мыслить.

ТКАНИ состоят из клеток и неклеточных образований (межклеточное вещество), однородных по происхождению, строению и функции.

Ткань

это эволюционно сложившаяся система клеток и межклеточного вещества, обладающая общностью строения, развития и выполняющая определенные функции.

Ткани, образующие организм человека.

Все разнообразие тканей организма человека и животных может быть сведено к четырем типам:

эпителиальные, или пограничные, ткани;

соединительные, или ткани внутренней среды организма;

мышечные, сократимые ткани

ткани нервной системы.

Эпителиальная ткань

пограничная ткань, покрывающая организм снаружи, выстилающая внутренние полости и органы, входящая в состав печени, легких, желез.

Клетки эпителиальной ткани располагаются в виде пласта.

полярность – различение верхней части клетки (апикальной) и нижней (базальной)

обладают высокой способностью к регенерации

нет кровеносных сосудов, питание осуществляется диффузно через базальную пластинку, состоящую из коллагеновых волокон нижележащих тканей.

Однослойный плоский эпителий.

Кубический эпителий.

Цилиндрический эпителий.

Однослойный мерцательный эпителий.

• Однорядный эпителий (ядра всех клеток расположены на одном уровне).

• Многорядный эпителий (ядра всех клеток расположены на разных уровнях).

• Многослойный эпителий (не все клетки касаются базальной мембраны).

Классификация эпителия по локализации в организме и функциям:

• Покровный эпителий (эпителий кожи).

• Эпителий паренхимы внутренних органов (эпителий легкого, печени).

•Железистый эпителий (эпителий желез, секретирующих различные вещества).

• Эпителий слизистых оболочек (выстилает полые органы, покрытые слизью, например, всасывающий эпителий кишечника).

•Эпителий серозных оболочек (выстилает стенки полостей тела, например, перикардиальной, брюшной, плевральной).

Функции эпителиальной ткани:

Ткани внутренней среды:

Особенность организации соединительной ткани:

наличие, наряду с клеточными элементами, большого количества межклеточного вещества, представленного основным веществом и волокнистыми структурами (образованы фибриллярными белками — коллагеном, эластином и др.).

Соединительная ткань классифицируется на:

1.Собственно соединительная ткань формирует прослойки внутренних органов, подкожную клетчатку, связки, сухожилия и др.:

соединительная ткань с особыми свойствами, к которой относятся ретикулярная, пигментная, жировая и слизистая ткани.

Волокнистая ткань представлена рыхлой неоформленной соединительной тканью, сопровождающей кровеносные сосуды, протоки, нервы, отделяющей органы друг от друга и от полостей тела, образующей при этом строму органов, а также плотной оформленной и неоформленной соединительной тканью, образующей связки, сухожилия, фасции, фиброзные перепонки и эластическую ткань.

2.Хрящевая ткань образована клетками хондроцитами и межклеточным веществом повышенной плотности. Хрящи выполняют опорную функцию и входят в состав различных частей скелета. Хрящевая ткань образует следующие виды хряща:

• гиалиновый хрящ (локализован на суставных поверхностях костей, концов ребер, трахеи, бронхов);

• волокнистый хрящ (локализован в межпозвоночных дисках);

• эластический хрящ (входит в состав надгортанника, ушных раковин).

3.Костная ткань формирует различные кости скелета, прочность которых обусловлена отложением в них нерастворимых кальциевых солей (участвует в минеральном обмене организма). Определяет форму тела.

Читайте также:
Боль при дефекации

коллагеновые волокна кости

костное основное вещество, где откладываются минеральные соли, составляющие до 70% от общей массы кости. Благодаря такому количеству солей костное основное вещество характеризуется повышенной прочностью.

Грубоволокнистая (ретикулофиброзная) – характерна для зародышей и молодых организмов

Пластинчатая – составляет кости скелета

А. губчатая – в эпифизах костей

Б. компактная – в диафизах трубчатых костей

Функции соединительной ткани:

• защитная (предохраняет органы от повреждений, вирусов, микроорганизмов);

Мышечная ткань:

свойства ее клеток – возбудимость, сократимость, проводимость.

Гладкая мышечная ткань:

образует мускулатуру внутренних органов,

входит в состав стенок кровеносных и лимфатических сосудов.

Гладкомышечные клетки имеют веретенообразную форму, содержат одно ядро и не имеют поперечной исчерченности.

Гладкие мышцы иннервируются вегетативной нервной системой и осуществляют относительно медленные движения и тонические сокращения.

Поперечно-полосатая мышечная ткань формирует скелетную мускулатуру, а также мышцы языка, глотки, начальной части пищевода. Структурно-функциональной единицей поперечно-полосатой мышечной ткани является мышечное волокно — длинная многоядерная клетка с поперечной исчерченностью, обусловленной определенным составом и расположением мышечных белков (актин, миозин и др.), участвующих в мышечном сокращении.

Скелетные мышцы содержат множество независимо сокращающихся волокон. Поперечно-полосатые мышцы сокращаются в ответ на импульсы, приходящие от двигательных нейронов спинного и головного мозга.

Сердечная мышечная ткань (миокард) сочетает свойства гладкой и поперечно-полосатой мышечной тканей:

не поддается произвольному управлению

Клетки сердечной мышцы соединены друг с другом с помощью особых отростков (вставочных дисков) с образованием единой структурно-функциональной единицы, отвечающей на раздражение одновременной сократительной реакцией всех мышечных элементов.

Функции мышечной ткани:

• перемещение тела в пространстве;

• смещение и фиксация частей тела;

• изменение объема полости тела, просвета сосуда, движение кожи;

Нервная ткань формирует головной и спинной мозг, нервные ганглии и волокна. Клетками нервной ткани являются нейроны и глиальные клетки.

Нейрон – основная функциональная единица нервной системы:

тело клетки (сомы)

2 типа отростков – дендриты и аксоны с концевыми пластинками.

Дендриты (обычно нейрон имеет несколько дендритов) — короткие, толстые, сильно ветвящиеся отростки, проводящие нервные импульсы (возбуждение) к телу нервной клетки.

Аксон — один, длинный (до 1,5 м в длину) неветвяшийся отросток нервной клетки, проводящий нервный импульс от тела клетки к ее концевому отделу (к периферии).

Отростки — полые трубочки, наполненные цитоплазмой, которая течет по направлению к концевым пластинам. Цитоплазма увлекает с собой ферменты, образовавшиеся в структурах гранулярного эндоплазматического ретикулума (вещество Ниссля) и катализирующие синтез медиаторов в концевых пластинах. Медиаторы запасаются в синоптических пузырька х. Будучи окруженными мембраной, медиаторы биологически инертны. Аксоны некоторых нейронов защищены с поверхности миелиновой оболочкой , образованной шванновскими клетками, обвивающими аксон. Места, в которых он не покрыт миелиновой оболочкой, называют перехватами Ранвье . Миелин является остатком мембран мертвых клеток. На 78% он состоит из липидов и на 22% — из белков. Состав миелина обеспечивает хорошие изолирующие свойства клетки.

Нервные клетки соединяются друг с другом посредством синапсов. Синапс — место контакта двух нейронов, где происходит передача нервного импульса от одной клетки к другой. Различают химические и электрические синапсы в зависимости от механизма передачи нервного импульса. Синапс состоит из:

В пресинаптической области нейрона содержатся везикулы с нейромедиатором — веществом, высвобождающимся в синаптическую щель при поступлении нервного импульса в клетку и воздействующим на постсинаптическую мембрану, вызывая изменение ее проницаемости, и, как следствие, мембранного потенциала.

По характеру воздействия нейромедиатора различают возбудительные и тормозные синапсы.

В зависимости от типов нервных отростков, участвующих в формировании синапса, наиболее часто встречаются синапсы:

• аксодендритические — аксон образует синапс на дендрите;

• аксосоматические — аксон образует синапс на теле клетки.

По положению в рефлекторной дуге и функционально выделяют группы нейронов:

Рецепторные нейроны (афферентные) ответственны за восприятие информации извне.

Вставочные нейроны (ассоциативные) — являются посредниками передачи информации между рецепторными и двигательными нейронами.

Двигательные нейроны (эфферентные или мотонейроны) ответственны за передачу импульса на исполнительный рабочий орган.

Клетки глии различаются по форме, расположению в нервной ткани. Они могут формировать плотные миелиновые оболочки вокруг аксонов, изолируя нервное волокно и способствуя тем самым значительному увеличению скорости передачи нервного импульса.

Так, глия выполняет следующие вспомогательные функции:

Функции нервной ткани:

• получение, переработка, хранение, передача информации, поступающей из внешней среды и внутренних органов

• регуляция и согласование деятельности всех систем организма.

Различные ткани сочетаются между собой и образуют органы.

Орган занимает постоянное положение в организме, частью которого он является; у него определенные строение, форма и функции. Органы находятся в тесном взаимодействии. В их форме и величине наблюдаются индивидуальные, половые и возрастные различия.

Органы, объединенные обшей функцией и происхождением, составляют систему органов.

Органы, посредством которых организм воспринимает пищевые вещества и кислород, необходимый для тканевого дыхания, окислительно-восстановительных процессов, составляют пищеварительную и дыхательную системы, а органы, выделяющие наружу отработанные вещества,— мочевыделительную систему. Системы органов, которые объединяются для выполнения совместной функции, называют аппаратом (например, опорно-двигательный аппарат включает костную систему, соединения костей и мышечную систему).

Читайте также:
Воспаление десен - причины, симптомы и лечение

Временную комбинацию разнородных органов, объединяющихся в данный момент для выполнения общей функции, называют функциональной системой.

Таким образом, можно выделить следующие иерархические уровни строения организма:

клетки и их производные

ткани (эпителиальные, внутренней среды, мышечная, нервная)

морфофункциональные единицы органов

аппараты (опорно-двигательный, мочеполовой, эндокринный, сенсорный)

системы органов (мышечная, костная, мочевая, половая, пищеварительная, дыхательная, сердечно-сосудистая, кровеносная, иммунная, нервная, органы чувств)

Из тканей формируются органы, причем одна из тканей органа является доминирующей. Органы, сходные по своему строению, функциям и развитию объединяются в системы органов: опорно-двигательную, пищеварительную, кровеносную, лимфатическую, дыхательную, выделительную, нервную, систему органов чувств, эндокринную, половую. Системы органов анатомически и функционально связаны в организм. Организм способен к саморегуляции. Это обеспечивает его устойчивость к влиянию внешней среды. Все функции организма контролируются нейрогуморальным путем, т.е. объединением нервной и гуморальной регуляции.

Тематические задания

А1. Эпителиальная ткань образует

1) слизистую оболочку кишечника

2) суставную сумку

3) подкожную жировую клетчатку

4) кровь и лимфу

А2. Соединительную ткань от эпителиальной можно отличить по

1) количеству ядер в клетках

2) количеству межклеточного вещества

3) форме и размерам клеток

4) поперечной исчерченности

А3. К соединительной ткани относятся

1) верхние, слущивающиеся клетки кожи

2) клетки серого вещества мозга

3) клетки образующие роговицу глаза

4) клетки крови, хрящи

А4. Одноядерные, веретенообразные клетки с сократительными волокнами относятся к

Анатомия и физиология человека

Анатомия изучает форму и строение органов и составляемых ими систем человеческого тела в связи с выполняемыми функциями; физиология исследует жизненные функции организма и его отдельных частей. И строение, и функции органов взаимосвязаны, поэтому их понимание невозможно в отрыве друг от друга. Знание анатомического строения, согласованной функции органов и систем позволяет обосновать гигиенические условия труда и отдыха, меры профилактики заболеваний для сохранения здоровья, трудоспособности и долголетия человека. Поэтому гигиена изучается в тесной связи с анатомией и физиологией.

Развитие анатомии связано с именами Аристотеля, Гиппократа, Галена, А.Везалия, У.Гарвея, Н.И.Пирогова, П.Ф.Лесгафта, И.И.Мечникова, В.П.Воробьева, В.Н.Тонкова, Н.М.Амосова и других ученых.

Анатомия человека включает следующие частные дисциплины: нормальную анатомию, изучающую строение здорового человека и его органы; патологическую анатомию – морфологию больного человека; топографическую анатомию – науку о местонахождении любого органа в человеческом теле; динамическую анатомию, изучающую двигательный аппарат с функциональных позиций, что имеет значение для правильного физического развития человека.

Анатомия исследует становление человека в его историческом развитии в процессе эволюции животных, используя сравнительно-анатомический метод. К анатомии примыкают гистология – наука о тканях, и эмбриология, которая изучает процессы образования половых клеток, оплодотворение, зародышевое развитие организмов.

Современная анатомия широко использует эксперимент и располагает новейшими методами исследования, включая современную оптику, рентгеновское излучение, применяет методы радиотелеметрии, пластические материалы, сплавы, консерванты и опирается на законы физики, химии, кибернетики, цитологии и др.

Физиологию можно разделить на три отдела – общую, сравнительную и специальную. Общая физиология исследует основные закономерности реагирования живых организмов на воздействия среды. Сравнительная физиология изучает специфические особенности функционирования целостного организма, а также тканей и клеток организмов, относящихся к разным видам. Сравнительная физиология тесно связана с эволюционной физиологией. Кроме того, существуют специальные разделы физиологии, изучающие физиологию различных видов животных (например, сельскохозяйственных, хищных и т. д.) или физиологию отдельных органов (сердца, почек, печени и т.д.), тканей, клеток.

Для изучения функций организма применяют различные методы. К ним относятся кратковременное или длительное наблюдение за работой органов при повышении функциональной нагрузки, действии на них раздражителей или при перерезке нервов, введении лекарственных веществ и т.п. Широко используются также инструментальные методы изучения, которые исключают какое-либо повреждение тканей и органов животных. С помощью различных приборов можно получить сведения об электрических процессах, происходящих в организме, о состоянии нервной системы, сердца и других органов. Современные методы позволяют регистрировать электрическую активность любого органа. С помощью оптических методов изучают внутреннюю поверхность стенки желудка, кишечника, бронхов, матки и т. д. Исследование тела с помощью рентгеновских лучей дает возможность изучать функционирование пищеварительной, сердечно-сосудистой и других систем у здорового и больного человека. Все большее значение приобретают радиотелеметрические способы передачи информации о физиологических процессах. Например, радиотелеметрию применяют для изучения состояния человека во время космических полетов. Для оценки функциональной активности органов человека широко используют биохимические исследования тканей, жидкостей организма – крови, спинно-мозговой жидкости, мочи и т. д. Таким образом, только с помощью всестороннего исследования организма можно глубоко понять принципы функционирования его на клеточном, тканевом, органном и системном уровнях.

Анатомия и физиология составляют основу медицинской науки. Современные успехи медицины поразительны: осуществляются операции на мозге, сердце, пересадка тканей и отторгнутых частей тела, переливание крови, пластические операции; синтезированы и успешно применяются гормоны, витамины, лечатся и предупреждаются с помощью лекарственных препаратов многие болезни, используются аппараты искусственного дыхания и кровообращения, искусственная “почка”.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: