Анафаза – определение и стадии митоза и мейоза

Определение и этапы митоза и мейоза

Анафаза – стадия во время эукариотическая клетка деление, при котором хромосомы выделяются на противоположных полюсах клетка, Этап перед анафазой, метафазы хромосомы тянутся к метафазной пластинке в середине клетки. Хотя хромосомы были сильно конденсированы в начале деление клеток они продолжают конденсироваться через анафазу. Анафаза начинается после того, как клетка проходит контрольную точку формирования веретена, что позволяет разделить хромосомы или хроматиды. По мере укорочения микротрубочек, которые соединяют хромосомы с центросомами, хромосомы тянутся к центросома пока они не образуют полукруг вокруг него. На следующем этапе деления клеток, телофаза клетка реформирует ядро ​​и готовится к делению.

Контрольная точка формирования шпинделя происходит до начала анафазы. Этот клеточный механизм гарантирует, что все хромосомы связаны с микротрубочками и выровнены на метафазной пластине. Как только этот шаг происходит, клетка выпускает сигнал, который создает анафазо-стимулирующий комплекс или APC, вещество, которое будет действовать, чтобы начать процесс деления гомологичные хромосомы или сестринские хроматиды в зависимости от того клеточный цикл происходит. APC, как видно на графике ниже, разлагает секурин, ингибирующий молекула что останавливает действие сепарации. Как только отделяется, он может воздействовать на cohesins, которые удерживают хроматиды вместе. Cohesins – это макромолекулы, состоящие из нескольких белков. Когда эти белки расщепляются по отдельности, хроматиды распадаются. В первом дивизионе мейоз, гомологичны хромосомы удерживаются вместе cohesins, которые разрушаются во время Анафаза I.

Микротрубочки остаются прикрепленными к кинетохоре после разрыва когезинов. Микротрубочки кинетохоры затем сжимаются к центросомам (не показано), что разделяет хромосомы. Не кинетохорные микротрубочки растут в противоположном направлении, расширяя клетку и далее разделяя хроматиды. Обычно сестринские хроматиды называются сестринскими хромосомами после их разделения, поскольку они содержат одинаковую информацию и будут независимо функционировать в своих новых клетках. После полного разделения хромосом образуется ядерная оболочка и цитоплазма будут разделены на заключительных этапах деления клеток.

Анафаза в Митозе

Митоз это процесс, используемый клетками для точного копирования себя. Через митоз, два новых дочерние клетки создаются из одного родителя, каждый из которых идентичен родителю. Перед митозом хромосомы, содержащие ДНК, реплицируются, а реплицированные сестринские хроматиды остаются прикрепленными. Перед анафазой хромосомы конденсируются, волокна шпинделя образуются из микротрубочек, и хромосомы выравниваются на метафазной пластинке. Сестринские хроматиды начинают отделяться в начале анафазы, когда разделение начинает разрушать когезин, который связывает их вместе. Анафаза заканчивается, когда телофаза и цитокинез начать, как реформы ядерной оболочки и хромосомы начинают раскручиваться. Как только они разболтались и клетки были разделены, они снова могут начать функционировать самостоятельно. Это отмечает конец деления клеток и начало интерфаза.

Анафаза в мейозе

Анафаза I

Мейоз состоит из двух последовательных клеточных делений, между которыми нет реплицированной ДНК. Это означает, что диплоид организмы, содержащие два аллеля для каждого ген, будет уменьшен до гаплоидный организм только с одним аллель на каждом гене. Эти аллели разделяются во время анафазы I. До мейоза ДНК дублируется, снова продуцируя сестринские хроматиды, связанные вместе как единые хромосомы. Эти хромосомы имеют гомологичные пары, которые содержат другие аллели для генов на хромосома, Эти хромосомы также дублируются в сестринские хроматиды. Во время мейоза I гомологичные хромосомы разделены.

Гомологичные хромосомы становятся связанными во время первая фаза мейоза, с помощью похожих молекул cohesin, которые связывают сестринские хроматиды. Как мейотический шпиндель устанавливается во время метафазе I клетка обеспечивает присоединение каждой гомологичной пары к микротрубочкам с каждой стороны клетки. Эти микротрубочки затем притягиваются друг к другу, чтобы переместить гомологичные пары в метафазную пластинку. В течение времени, когда пары связаны, они могут обмениваться генетической информацией в процессе, называемом рекомбинацией. Когда гомологичные пары разделяются во время анафазы I, вариации ДНК становятся предназначенными для разных клеток, обеспечивая изменчивость в Население «s генетика.

Анафаза II

Мейоз завершается вторым делением каждой новой дочерней клетки. Проходят те же этапы, на этот раз более похожим на митоз. Хромосомы, все еще сделанные из сестринских хроматид, выравниваются на метафазной пластинке и должны пройти контрольную точку, чтобы перейти к анафазе II. В начале анафазы II сестринские хроматиды отделяются, когда связывающий их когезин высвобождается. Затем копии хромосомы отделяются до их конечного пункта назначения. Эти новые клетки будут давать гаметы, которые могут оплодотворять гамета противоположного пола, чтобы произвести новое потомство.

Если клеточные контрольные точки, ведущие к анафазе I или анафазе II, терпят неудачу, конечным результатом будет слишком много копий хромосомы (или многих) в конечном гамете. Это состояние, известное как нерасхождения, может привести к фатальным врожденным дефектам и другим симптомам у многих размножающихся половым путем животных. У людей эти состояния включают синдром Дауна, синдром Эдвардса, синдром Клайнфелтера и синдром Тернера. Эти синдромы имеют различные симптомы развития, которые создают фенотипы, которые отличаются от среднего.

  • Нерасхождения – Состояние, вызванное неспособностью хромосом отделиться во время любого деления мейоза.
  • цитокинез – последняя стадия митоза или мейоза, при которой клеточная мембрана водоразделы.
  • Анафазный промоушн комплекс – Система белков, коферментов и других молекул, которые позволяют сепарации разрушать молекулы когезина, что приводит к разделению хромосом.
  • Cohesin – Белковые молекулы, которые связывают сестринские хроматиды или гомологичные хромосомы вместе.
Читайте также:
Acoelomatа это - определение и тест

викторина

1. Клетка подвергается митозу. Хромосомы разделились и движутся к своим новым ядрам, но ядерные оболочки не изменились. На какой стадии находится клетка?A. профаза B. анафазаC. телофаза

Ответ на вопрос № 1

В верно. Эта клетка находится в анафазе. Телофаза характеризуется реформированием ядерных оболочек и дальнейшим делением органелл и цитозоль, Телофаза завершается, когда цитокинез расщепляет клетку на две части. Линия между анафазой и телофазой является серой, но ядерная оболочка начинает формироваться в начале телофазы. Хромосомы могут все еще перемещаться в их заключительные положения, поскольку это происходит.

2. Анафаза происходит невероятно быстро. Весь процесс составляет всего 1% клеточного цикла. Почему хромосомы не разрываются во время этого насильственного движения?A. Конденсированная ДНК более защищена от вредаB. Длинные сегменты ДНК, называемые теломерами, защищают концы ДНК.C. Оба а и Б

Ответ на вопрос № 2

С верно. ДНК защищена рядом механизмов, только два из которых являются теломерами и способностью конденсироваться. Волокна веретена также защищают ДНК, поскольку они обеспечивают четкий путь в одном направлении для продвижения хромосомы. ДНК также быстро окружается ядерной оболочкой после анафазы, которая защищает ее от остального деления клеток.

3. Дрожжи являются одноклеточным�� эукариотическими организмами. Дрожжи проходят через митоз и в настоящее время находятся в анафазе. Сколько организмов сейчас присутствует и сколько их будет после цитокинеза?A. 2; 4B. 1; 1C. 1; 2

Ответ на вопрос № 3

С верно. Иногда дрожжи могут размножаться половым путем, но это пример того, как они размножаются бесполым путем. Таким образом, после того, как клетка делится, присутствуют два организма, когда только один присутствовал во время анафазы. Это верно для любого одноклеточного организма, который подвергается митозу. Разделение двух клеток является разделительной линией между одним организмом и двумя, поскольку клеточная мембрана физически отделяет содержимое каждой клетки от другой. Это означает, что организмы теоретически независимы, хотя они все еще могут взаимодействовать.

Митоз и мейоз

С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.

Фазы клеточного цикла

Здесь и в дальнейшем мы будем пользоваться генетической формулой клетки, где “n” – число хромосом, а “c” – число ДНК (хроматид). Напомню, что в состав каждой хромосомы может входить как одна молекула ДНК (одна хроматида) (nc), либо две (n2c).

Генетическая формула клетки

Клеточный цикл включает в себя несколько этапов: деление (митоз), постмитотический (пресинтетический), синтетический, постсинтетический (премитотический) период. Три последних периода составляют интерфазу – подготовку к делению клетки.

    Пресинтетический (постмитотический) период G1 – 2n2c

Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, клетка растет.

Длится 6-10 часов. Важнейшее событие этого периода – удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид. Активно синтезируются структурные белки ДНК – гистоны.

Короткий, длится 2-6 часов. Это время клетка тратит на подготовку к последующему процессу – делению клетки, синтезируются белки и АТФ, удваиваются центриоли, делятся митохондрии и хлоропласты.

Жизненный цикл клетки

Митоз (греч. μίτος – нить)

Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.

Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.

  • Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры – хромосомы – происходит это за счет спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток)
  • Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки
  • Центриоли перемещаются к полюсам клетки, образуются центры веретена деления

Профаза митоза

ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).

Метафаза митоза

Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления тянут хроматиды (синоним – дочерние хромосомы) к полюсам клетки.

Анафаза митоза

  • Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный моток ниток)
  • Появляется ядерная оболочка, формируется ядро
  • Разрушаются нити веретена деления
Читайте также:
7 самых ядовитых грибов в мире, опасных для жизни с фото и описанием

В телофазе происходит деление цитоплазмы – цитокинез (цитотомия), в результате которого образуются две дочерние клетки с набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений – формированием плотной клеточной стенки (которая растет изнутри кнаружи).

Телофаза митоза

Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит удвоение ДНК, после чего каждая хромосома состоит из двух хроматид – 2n4c. Клетка с набором 2n4c и попадает в профазу митоза. Так замыкается клеточный цикл.

  • В результате митоза образуются дочерние клетки – генетические копии (клоны) материнской.
  • Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных организмов).
  • Универсальность митоза служит очередным доказательством единства всего органического мира.

Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).

Фазы митоза

Мейоз

Мейоз (от греч. μείωσις — уменьшение), или редукционное деление клетки – способ деления клетки, при котором наследственный материал в них (число хромосом) уменьшается вдвое. Мейоз происходит в ходе образования половых клеток (гамет) у животных и спор у растений.

В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).

Мейоз

Как уже было сказано, мейоз состоит из двух делений: мейоза I (редукционного) и мейоза II (эквационного). Первое деление называют редукционным (лат. reductio – уменьшение), так как к его окончанию число хромосом уменьшается вдвое. Второе деление – эквационное (лат. aequatio — уравнивание) очень похоже на митоз.

    Профаза мейоза I

Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.

Профаза мейоза I

Конъюгация (лат. conjugatio — соединение) – сближение гомологичных хромосом друг с другом. Гомологичными хромосомами называются такие, которые соответствуют друг другу по размерам, форме и строению. В результате конъюгации образуются комплексы, состоящие из двух хромосом – биваленты (лат. bi – двойной и valens – сильный).

После конъюгации становится возможен следующий процесс – кроссинговер (от англ. crossing over — пересечение), в ходе которого происходит обмен участками между гомологичными хромосомами.

Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.

Кроссинговер

Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.

Метафаза мейоза I

Нити веретена деления сокращаются, вследствие чего биваленты распадаются на отдельные хромосомы, которые и притягиваются к полюсам клетки. В результате у каждого полюса формируется гаплоидный набор будущей клетки – n2c, за счет чего мейоз I и называется редукционным делением.

Анафаза мейоза I

Происходит цитокинез – деление цитоплазмы. Формируются две клетки с гаплоидным набором хромосом. Очень короткая интерфаза после мейоза I сменяется новым делением – мейозом II.

Телофаза мейоза I

Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).

Мейоз II

В результате мейоза I и мейоза II мы получили из диплоидной клетки 2n4c гаплоидную клетку – nc. В этом и состоит сущность мейоза – образование гаплоидных (половых) клеток. Вспомнить набор хромосом и ДНК в различных фазах мейоза нам еще предстоит, когда будем изучать гаметогенез, в результате которого образуются сперматозоиды и яйцеклетки – половые клетки (гаметы).

Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.

Помните, что до мейоза происходит удвоение ДНК в синтетическом периоде. Из-за этого уже в начале мейоза вы видите их увеличенное число – 2n4c (4 хромосомы, 8 молекул ДНК). Я понимаю, что хочется написать 4n8c, однако это неправильная запись!) Ведь наша исходная клетка диплоидна (2n), а не тетраплоидна (4n) ;)

Мейоз

  • Поддерживает постоянное число хромосом во всех поколениях, предотвращает удвоение числа хромосом
  • Благодаря кроссинговеру возникают новые комбинации генов, обеспечивается генетическое разнообразие состава гамет
  • Потомство с новыми признаками – материал для эволюции, который проходит естественный отбор
Бинарное деление надвое

Митоз и мейоз возможен только у эукариот, а как же быть прокариотам – бактериям? Они изобрели несколько другой способ и делятся бинарным делением надвое. Оно встречается не только у бактерий, но и у ряда ядерных организмов: амебы, инфузории, эвглены зеленой.

Бинарное деление надвое

При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.

Читайте также:
Амнион это - определение и функция
Амитоз (от греч. ἀ – частица отрицания и μίτος – нить)

Способ прямого деления клетки, при котором не происходит образования веретена деления и равномерного распределения хромосом. Клетки делятся напрямую путем перетяжки, наследственный материал распределяется “как кому повезет” – случайным образом.

Амитоз

Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Лекция № 13. Способы деления эукариотических клеток: митоз, мейоз, амитоз

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c) — репликация ДНК.

Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

Митотический цикл, митоз

Митотический цикл, митоз: 1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

Мейоз

Мейоз — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).

Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом. Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

Мейоз

Мейоз: 1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Купить проверочные работы
и тесты по биологии

Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы Биология. 9 класс. Тесты

Метафаза 1 (2n 4c) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Читайте также:
Анатомическое Положение - определение и функция

Второе мейотическое деление (мейоз 2) называется эквационным.

Интерфаза 2, или интеркинез (1n 2c), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Амитоз

Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

Жизненный цикл клетки: интерфаза и митоз

Жизненный цикл клетки – это время существованя клетки с момента первого деления до следующего деления, или до последнего деления (смерти клетки).

Клетки делятся несколькими способами:

  • Амитоз. Деление клетки осуществляется в интерфазе. В данном случае хромосомы не конденсируются, не образуется веретено деления, и ядерная оболочка не распадается. При амитозе ядро вытягивается и делится на две части путём перетяжки. Таким образом делятся, например, клетки злокачественных опухолей.
  • Митоз. Непрямое деление, в результате которого, из одной клетки образуются две идентичные ей дочерние. Так делятся соматические клетки.
  • Мейоз. Этот способ деления осуществляется, когда происходит образование половых гамет.

Интерфаза

Митотический цикл состоит из двух последовательных стадий.

Непосредственно перед делением клетка проходит интерфазу, или стадию покоя, функциональное значение которой в том, что во время неё синтезируется ДНК. Длительность стадии покоя составляет 90% и более в течение всего цикла клеточного деления.

Интерфаза представлена тремя периодами:

Период Характеристика
Пресинтетический, или постмитотический Обозначается G1 или q1. Продолжительность этого периода 10 часов и более. Осуществляется сразу после деления клетки. Содержание генетического набора в клетке – 2n2c, диплоидный набор хромосом, каждая из которых имеет одну хроматиду. Здесь происходит восстановление структуры интерфазной клетки: окончательно формируется ядрышко; масса клетки увеличивается за счёт синтеза белка; происходит образование ферментов, участвующих в катализе реакции репликации; синтезируется белок; увеличивается количество различных видов рибонуклеиновой кислоты (РНК). Хромосомы представлены тонкими хроматиновыми нитями, каждая нить состоит из одной хромосомы.
Синтетический Обозначается как S. Продолжительность 6 – 10 часов. В данном периоде происходит удвоение (репликация, дупликация) ДНК, хромосомы становятся двухроматидными. Это необходимо для последующего митотического деления клетки. Также, на этом этапе продолжается рост клетки, начавшийся в пресинтетичском периоде, синтезируется РНК, белки – гистоны, в последующем соединяющиеся с ДНК. Генетический материал – 2n4c.
Постсинтетический или премитотический Обозначение: G2 (q2).Содержание генетической информации – 2n4c. В этом периоде осуществляется подготовка к митозу, продолжается он 2 – 5 часов. Происходит усиленное образование энергии АТФ; синтезируются белки, которые необходимы для обеспечения процесса деления и образования веретена деления; начинается спирализация хромосом; значительно увеличивается объём ядра, а, следовательно, и масса цитоплазмы. Далее клетка непосредственно переходит к стадии митоза.

Митоз – деление соматических клеток

Митоз – это непрерывный процесс деления клеток, который подразделяется на 4 последовательных стадий: профаза, метафаза, анафаза и телофаза.

  1. Профаза. Содержание генетического материала: 2n4c. В этой фазе происходит конденсация хромосом в ядре, хроматиды спирализуются и образуется ахроматиновое веретено (веретено деления). Распадается ядерная оболочка. Ядрышки исчезают (но это необязательное условие, бывают исключения). Центриоли клеточного центра начинают расходиться к полюсам клетки и образуют центры организации микротрубочек. У высших растений нет центриолей, однако микротрубочки образуются.
  2. Метафаза. Набор хромосом: 2n4c. Характеризуется расположением сильно сконденсированных хромосом на экваторе клетки, образованием метафазной пластинки в области центромеры. Ядерная оболочка полностью исчезла. Ахроматиновое веретено полностью сформировано. Хромосомы удерживаются благодаря силе натяжения микротрубочек полюсов. Количество хромосом в эту фазу легко подсчитать, они уплотнены и имеют определённую форму.
  3. Анафаза. Содержание генетического материала: 4n4c. Самая короткая по продолжительности фаза, она начинается в момент, когда центромеры хромосом делятся на две части. Здесь происходит разделение хроматид с последующим их движением к своим полюсам и прикрепление к укороченным микротрубочкам. Расхождение происходит вследствие укорочения микротрубочек, образующих нити веретена деления.
  4. Телофаза. Содержание генетического материала: 2n2c. В этой фазе движение хромосом заканчивается, и они концентрируются на полюсах клетки и раскручиваются в тонкие нити. Формируется ядрышко, путём слияния мембранных пузырьков образуется ядерная оболочка, исчезают нити веретена деления. Образуются перетяжка, с помощью которой клетка делится на две части.
Читайте также:
Аэробное дыхание - функция, типы и примеры с тестом

Рис. 1 Фазы метоза

Мейоз

Мейоз – это процесс деления клетки, при котором число хромосом уменьшается вдвое, происходит образование гаплоидных клеток.

Данный процесс проходит в двух последовательных деления, первое из которых принято называть редукционным (мейоз I), а второе эквационным (мейоз II). Эквационное деление также можно назвать уравнительным, оно позволяет сохранить гаплоидный набор хромосом. Второе деление по механизму протекания схоже с митозом, однако здесь к полюсам расходятся сестринские хроматиды.

Так же, как и митоз, мейоз начинается после интерфазы. Количество ДНК перед первым делением составляет 2n4c, где n – хромосомы, с – молекулы ДНК. Это обозначает, что каждая хромосома состоит из двух хроматид и имеет гомологичную пару. После первого деления, перед вторым, количество ДНК в каждой дочерней клетке уменьшается до 1n2c. Результатом мейоза после второго деления является образование четырёх гаплоидных клеток. Мейоз представлен такими же четырьмя фазами, как и митоз, однако протекающие процессы в двух этих делениях существенно отличаются.

Мейоз I

  • Профаза I. 2n4c. Это самая длительная и сложная фаза мейоза. Здесь гомологичные хромосомы сближаются, образуя так называемые биваленты, между ними происходит обмен участками ДНК. Связь бивалента сохраняется до анафазы I. Сближение хромосом называют конъюгацией, обмен участками наследственной информации – кроссинговером. Гомологичные хромосомы соединены между собой. Ядерная оболочка растворяется. Начинает своё формирование мейотическое веретено деления. Центриоли расходятся к полюсам клетки.
  • Метафаза I.2n4c. На этом этапе веретено деления окончательно сформировано. Биваленты расположены в области экватора, при этом они выстроены друг напротив друга по экватору так, что экваториальная плоскость оказывается между парами гомологичных хромосом.
  • Анафаза I. 2n4c. Биваленты разъединяются и хромосомы расходятся к противоположным полюсам клетки. Вследствие кроссинговера, прошедшего в профазе, хроматиды этих хромосом не идентичны друг другу.
  • Телофаза I. n2c×2. Хромосомы деспирализуются в хроматин. Происходит формирование ядерной оболочки, клетки делится на две части. У растений образуется клеточная стенка, у животных же происходит впячивание мембраны.

Фазы мейоза I

Мейоз II

Перед эквационным делением интерфаза называется интеркинезом, так как удвоения наследственного материала (ДНК) не происходит.

  • Профаза II. 1n2c×2. Короткая по продолжительности фаза. На этом этапе разрушается ядерная оболочка, снова исчезают ядра и ядрышки, происходит конденсация хромосом, формируется веретено деления.
  • Метафаза II. 1n2c×2. К каждой из двухроматидных хромосом прикрепляются нити веретена деления с разных полюсов. В плоскости перпендикулярной экватору метафазы первого деления образуется метафазная пластинка.
  • Анафаза II. 2n2c×2. Центромеры делятся. Однохроматидные хромосомы расходятся к разным полюсам. Теперь сестринские хроматиды являются сестринскими хромосомами.
  • Телофаза II. 1n1c×4. В эту фазу происходит деспирализация хромосом, исчезает веретено деления, формируется ядерная оболочка, образуются ядра и ядрышки. Далее следует цитокинез, вследствие которого формируется 4 гаплоидные клетки с одинарным набором хромосом (1n1c).

Фазы мейоза II

Источники изображений:
Рис. 1 — wikia.org

Рис 2, рис. 3 — 900igr.net

Анафаза – определение и стадии митоза и мейоза

Митоз — способ непрямого деления соматических клеток.

Во время митоза клетка проходит ряд последовательных фаз, в результате которых до­ черние клетки получают такой же набор хромосом, как и в материнской клетке. Выделяют четыре основные фазы митоза: профазу, метафазу, анафазу и телофазу

Профаза — наиболее длительная стадия митоза, в процессе которой происходит конден­ сация хроматина, в результате чего становятся видны X­образные хромосомы, состоящие из двух хроматид (дочерних хромосом). При этом исчезает ядрышко, центриоли расходятся к полюсам клетки, и начинает формировать­ся ахроматиновое веретено (веретено деления) из микротрубочек. В конце профазы ядерная оболочка распадается на отдельные пузырьки.

В метафазе хромосомы выстраивают­ся по экватору клетки своими центромерами, к которым прикрепляются микротрубочки пол­ ностью сформированного веретена деления. На этой стадии деления хромосомы наиболее уплотнены и имеют характерную форму, что позволяет изучить кариотип. В анафазе центромеры хромосомы расщепляются и хроматиды расходятся к полюсам клетки, растягиваемые микротрубочками. На стадии телофазы дочерние хромосомы собираются на полюсах, деспирализуются, вокруг них из пузырьков формируются ядерные оболочки, а во вновь образовавшихся ядрах возникают ядрышки.

Таким образом, в результате митоза из од­ ной материнской клетки образуется две дочер­ние, каждая из которых является генетической копией материнской (2n2c).

Читайте также:
Апоплексия - определение и объяснение
Insert Flash

Мейоз — это способ непрямого деления предшественников половых клеток (2n), в ре­ зультате которого образуются гаплоидные клет­ ки (1n), чаще всего половые.

В отличие от митоза, мейоз состоит из двух последовательных делений клетки, каждому из которых предшествует интерфаза. Первое деление мейоза (мейоз I) называет­ ся редукционным, так как количество хро­ мосом уменьшается вдвое, а второе деление (мейоз II) — эквационным, так как в его про­ цессе количество хромосом сохраняется.

Интерфаза I протекает подобно интерфазе митоза. Мейоз I делится на четыре фазы: про­ фазу I, метафазу I, анафазу I и телофазу I В профазе I происходят два важнейших процесса — конъюгация и кроссинговер. Конъюгация — это процесс слияния гомологичных (парных) хромосом. Образовавшиеся па­ ры хромосом сохраняются до конца метафазы I. Кроссинговер — взаимный обмен гомологичными участками гомологичных хромосом. В результате кроссинговера хромосомы, по­ лученные организмом от родителей, приобретают новые комби­ нации генов, что обусловливает появление генетически разнообразного потомства. В конце профазы I, как и в профазе митоза, исчезает ядрышко, центриоли расходятся к полюсам прикрепляются микротрубочки веретена деления. В анафазе I к полюсам расходятся целые гомологичные хромосомы, состоящие из двух хроматид.

В телофазе I вокруг скоплений хро мосом у полюсов клетки образуются ядерные оболоч­ ки, формируются ядрышки.

Цитокинез I обеспечивает разделение цитоплазм дочерних клеток.
Образовавшиеся в результате мейоза I дочерние клетки (1n2c) генетически разнородны, поскольку их хромосомы, случайным образом разошедшиеся к полюсам клетки, содержат неодинаковые гены.

Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть от­сутствует S­период.

Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофа­зу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюга­ ции и кроссинговера.

В метафазе II хромосомы располагаются вдоль экватора клетки.

В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.

В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.

После цитокинеза II генетическая формула всех четырех дочерних клеток — 1n1c, од­ нако все они имеют различный набор генов, что является результатом кроссинговера и слу­чайного сочетания хромосом материнского и отцовского организмов в дочерних клетках.

Сходство и различие между митозом и мейозом

Развитие и рост многоклеточных организмов невозможны без процесса деления клеток. В природе существует несколько видов и способов деления. В данной статье мы кратко и понятно расскажем о митозе и мейозе, разъясним основное значение этих процессов, познакомим с тем, чем отличаются они, а чем схожи.

Материал подготовлен совместно с учителем высшей категории

Макшаковой Натальей Алексеевной.

Опыт работы учителем биологии — 23 лет.

Сходство и различие между митозом и мейозом

Ответ или решение2

Сходства митоза и мейоза: одинаковые стадии — профаза, метафаза, анафаза, телофаза.

Различия связаны с:

а) местом протекания: митоз — в соматических клетках, мейоз — в половых клетках;

б) количеством повторения фаз: в митозе — 1, в мейозе — 2 ;

в) событиями: в профазе 1 деления мейоза происходит переплетение гомологичных хромосом (конъюгация) и обмен их аналогичными участками (кроссинговер);

г) результатом: при митозе — 2 клетки с диплоидным набором хромосом, а при мейозе — 4 клетки с гаплоидным.

Почти все эукариотические клетки появляются в следствии сначала удвоения, а после деления генетического материала ядра и деления клетки(цитокинез). Сформированные клетки живут и функционируют до тех пор, пока снова не поделятся или же не умрут.

Митоз — это непрямое деление клетки, что образует две сестринские клетки в каждой из которых тот же набор хромосом, что и в материнской.

Мейоз — это форма деления клетки, происходит во время гаметогенеза. Результат мейоза — яйцеклетки или же сперматозоиды(половые клетки, гаметы).

Предварительный просмотр:

Сравнение митоза и мейоза

1. Сходные механизмы, с помощью которых хромосомы и др. клеточные органеллы реплицируются.

2. Перед митозом и мейозом происходит самоудвоение хромосом, спирализация и удвоение молекул ДНК.

3. Сходны механизмы перемещения структур.

4. Сходны механизмы цитокинеза.

5. Имеют одинаковые фазы деления.

2. В интерфазе – набор хромосом 2n.

2. В интерфазе I – набор хромосом 2n, в интерфазе II – набор хромосом 1n.

3. В профазе гомологичные хромосомы обособлены, хиазмы не образуются, кроссинговер не происходит.

3. В профазе I гомологичные хромосомы конъюгируют, хиазмы образуются, кроссинговер может быть.

4. В метафазе по экватору выстраиваются хромосомы.

4. В метафазе I по экватору выстраиваются биваленты (гомологичные хромосомы).

5. В анафазе – расхождение к полюсам хроматид. Хроматиды идентичны.

5. В анафазе I – расхождение к полюсам гомологичных хромосом (состоящих из двух хроматид). Хромосомы неидентичны.

6. Образуются 2 дочерние клетки с 2n набором хромосом (подобно родительской клетке).

6. Образуются 4 клетки с n набором хромосом. Число хромосом в дочерних клетках вдвое меньше, чем в родительских. Дочерние клетки содержат только по одной из каждой пары гомологичных хромосом.

Читайте также:
Антекубитальная Ямка - что такое и где находится на локте

7. При образовании соматических клеток и при образовании гамет у растений с чередованием поколений.

7. При гаметогенезе у животных и спорогенезе у растений.

Сравнение митоза и мейоза

1. Сходные механизмы, с помощью которых хромосомы и др. клеточные органеллы реплицируются.

2. Перед митозом и мейозом происходит самоудвоение хромосом, спирализация и удвоение молекул ДНК.

3. Сходны механизмы перемещения структур.

4. Сходны механизмы цитокинеза.

5. Имеют одинаковые фазы деления.

2. В интерфазе – набор хромосом 2n.

2. В интерфазе I – набор хромосом 2n, в интерфазе II – набор хромосом 1n.

3. В профазе гомологичные хромосомы обособлены, хиазмы не образуются, кроссинговер не происходит.

3. В профазе I гомологичные хромосомы конъюгируют, хиазмы образуются, кроссинговер может быть.

4. В метафазе по экватору выстраиваются хромосомы.

4. В метафазе I по экватору выстраиваются биваленты (гомологичные хромосомы).

5. В анафазе – расхождение к полюсам хроматид. Хроматиды идентичны.

5. В анафазе I – расхождение к полюсам гомологичных хромосом (состоящих из двух хроматид). Хромосомы неидентичны.

6. Образуются 2 дочерние клетки с 2n набором хромосом (подобно родительской клетке).

6. Образуются 4 клетки с n набором хромосом. Число хромосом в дочерних клетках вдвое меньше, чем в родительских. Дочерние клетки содержат только по одной из каждой пары гомологичных хромосом.

7. При образовании соматических клеток и при образовании гамет у растений с чередованием поколений.

7. При гаметогенезе у животных и спорогенезе у растений.

Что такое Митоз

Митоз — это тип деления клеток, при котором образуются две дочерние клетки, идентичные родительской. Митоз наблюдается при обычном росте и восстановлении тканей, увеличении количества соматических клеток в организме. Митоз — это процесс ядерное подразделение, за которым всегда следует деление цитоплазмы, цитокинез. Как правило, диплоидная клетка, которая завершает свою интерфазу, подвергается митозу. Интерфаза состоит из G1, S и G2 этапы. Наибольшая скорость метаболической активности клетки может наблюдаться в интерфазе. Репликация ДНК, синтез белка и синтез органелл происходят в интерфазе. Профаза, прометафаза, метафаза, телофаза и анафаза являются стадиями митоза.

профаза

Хроматин в ядре конденсируется и становится видимым в виде хромосом во время профазы. Ядрышко исчезает. Поскольку две центриоли движутся к противоположным полюсам, митотический веретено начинает формироваться.

прометафазе

Ядерные мембраны растворяются, и белки кинетохоры образуются в центромерах хромосом во время прометафазы. Микротрубочки митотического веретена прикрепляются к белкам кинетохоры.

Metaphase

Отдельные хромосомы выровнены вдоль клеточного экватора с помощью митотических веретен, обеспечивая надлежащую сегрегацию сестринских хроматид в две дочерние клетки.

анафаза

Во время анафазы сестринские хроматиды отделены от их центромер. Отделенные сестринские хроматиды начинают двигаться к противоположным полюсам клетки.

телофаза

Во время телофазы сестринские хроматиды достигают двух противоположных полюсов, и вокруг двух дочерних ядер образуются новые ядерные мембраны.

После ядерного деления деление цитоплазмы или цитокинеза начинается с расположения волокон актина вокруг центра клетки у животных. Сжатия актиновых волокон приводят к сжатию родительской клетки в две дочерние клетки. У растений в середине родительской клетки образуется жесткая клеточная стенка, разделяющая ее на две части. Этапы митоза показаны в Рисунок 1.

Сходство и различие между митозом и мейозом

Рисунок 1: Митоз

Подробнее: Каковы этапы митоза

Мейоз

Деление половых клеток называется мейозом, оно сопровождается уменьшением числа хромосом в дочерних клетках вдвое. Особенность данного процесса состоит в том, что проходит он в два этапа, которые непрерывно следуют друг за другом.

ТОП-4 статьикоторые читают вместе с этой

Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна.

Сходство и различие между митозом и мейозом

Рис. 2. Схема мейоза

Биологическим значением мейоза является образование гаплоидных (с одним набором хромосом) половых клеток у животных и спор у растений. Диплоидность (двойной набор хромосом в клетке) восстанавливается после оплодотворения, то есть слияния материнской и отцовской клетки. В результате слияния двух гамет образуется зигота с полным набором хромосом.

Уменьшение числа хромосом при мейозе очень важно, так как в противном случае число хромосом увеличивалось бы из поколения и поколения. Благодаря редукционному делению поддерживается постоянное число хромосом.

Сравнительная характеристика

Отличие митоза и мейоза состоит в продолжительности фаз и происходящих в них процессах. Ниже предлагаем вам таблицу «Митоз и мейоз», где указаны основные различия двух способов деления. Фазы мейоза такие же, как и у митоза.

Фазы

Митоз

Мейоз

Первое деление

Второе деление

Набор хромосом материнской клетки диплоидный. Синтезируется белок, АТФ и органические вещества. Редупликация (самоудвоение ДНК), увеличение числа хромосом.

Диплоидный набор хромосом. Происходят те же действия, что и при митозе.

Гаплоидный набор хромосом. Самоудвоение ДНК не происходит.

Непродолжительная фаза. Растворяются ядерные мембраны и ядрышко, начинает формироваться веретено деления, происходит спирализация хромосом.

Занимает больше времени, чем при митозе. Также исчезают ядерная оболочка и ядрышко, формируется веретено деления. Помимо этого наблюдается процесс конъюгации (сближение и слияние гомологичных хромосом). При этом может происходить кроссинговер – обмен генетической информации на некоторых участках.

Читайте также:
9 самых смертоносных и ядовитых пауков в мире с фото

По продолжительности – короткая фаза. Процессы такие же, как и при митозе, только с гаплоидными хромосомами.

Хромосомы располагаются в экваториальной плоскости.

В экваториальной плоскости располагаются биваленты – пары гомологичных хромосом, образовавшиеся в профазу

Тоже, что и при митозе, только с гаплоидным набором.

Центромеры делятся и из одной двухроматидной хромосомы образуется две сестринские, которые расходятся к разным полюсам клетки за счет сокращения нитей веретена деления.

Деление центромер не происходит. К полюсам отходят гомологичные двухроматидные хромосомы каждой пары.

Аналогично митозу, только с гаплоидным набором.

На полюсах клетки образуются ядерные мембраны вокруг хромосом. Веретено деления исчезает. Хромосомы деспирализуюся (раскручиваются), происходит разделение цитоплазмы между двумя клетками.

По длительности непродолжительная фаза. В конце деления гомологичные хромосомы располагаются в разных клетках с гаплоидным набором. Цитоплазма делится не во всех случаях.

В результате образования ядер и разделения цитоплазмы образуется четыре гаплоидные клетки.

Сходство и различие между митозом и мейозом

Рис. 3. Сравнительная схема митоза и мейоза

Митоз

Процесс непрямого деления, или митоз, чаще всего встречается в природе. На нём основывается деление всех существующих неполовых (соматических) клеток, а именно мышечных, нервных, эпителиальных и прочих.

Состоит митоз из четырёх фаз: профазы, метафазы, анафазы и телофазы. Основная роль данного процесса – равномерное распределение генетического кода от родительской клетки к двум дочерним. При этом клетки нового поколения генетически идентичны материнским.

Сходство и различие между митозом и мейозом

Рис. 1. Схема митоза

Время между процессами деления называются интерфазой. Чаще всего интерфаза гораздо длиннее митоза. Для этого периода характерны:

Урок Бесплатно Жизненный цикл клетки: интерфаза и митоз. Мейоз. Фазы митоза и мейоза

Когда вы только родились, ваш вес составлял в среднем от 3 до 4кг, а рост всего около 50-60 см, но с каждым днем вы становились больше и выше..

А какой рост и вес у вас сегодня и почему произошло увеличение этих показателей по сравнению с прошлыми годами?

Всё это благодаря способности клеток к размножению, в основе которого лежит процесс деления.

Рост и развитие всех многоклеточных организмов всегда связаны с делением клеток.

У человека и животных во взрослом состоянии в некоторых тканях клетки постоянно отмирают и заменяются новыми, которые образуются как раз путем деления.

Следовательно, деление клеток является тем процессом, благодаря которому поддерживается жизнь всего организма и обеспечивается непрерывность жизни клетки.

Наряду с непрерывностью жизни клетки происходит и преемственность наследственных свойств от родительской клетки к дочерней.

То есть в процессе деления каждая вновь образующаяся клетка должна получить точную копию генетического материала, чтобы обладать общей наследственной программой, специализироваться и выполнять функции, какие и выполняла материнская клетка.

Существуют два различных типа деления клетки: вегетативное деление, при котором каждая дочерняя клетка генетически идентична родительской клетке -митоз, и репродуктивное клеточное деление, при котором количество хромосом в дочерней клетке снижается вдвое для производства гамет – мейоз.

То есть клетки тела или соматические клетки образуются путем непрямого деления –митозом, а половые клетки (гаметы) образуются благодаря редукционному делению клетки или мейозу.

Сегодня наука может заглянуть в этот клеточный мир и проследить за процессами митоза и мейоза в клетках, приближая нас к раскрытию и пониманию еще одной тайны живой природы – самовоспроизведению.

Клеточный цикл

Для начала рассмотрим жизнь одной клетки нашего организма.

Весь период существования клетки от момента её образования до собственного деления или гибели называется клеточным циклом или жизненным циклом клетки.

Длительность жизненного цикла у разных клеток разная, но у большинства активно делящихся клеток, она составляет примерно от 10 до 24 часов.

У меня есть дополнительная информация к этой части урока!

Примеры длительности жизни клеток:

· у амебы жизненный цикл клетки равен 36 часам

· бактериальные клетки могут делиться каждые 20 минут

· у клеток кишечного эпителия грызунов цикл между делениями в среднем 15 часов

· клетки крови человека: тромбоциты живут около 7- 11 дней, лейкоциты – от одного дня до нескольких недель, эритроциты живут 30-120 дней

· нервные клетки перестают делиться ещё во время внутриутробного развития, их жизнь зависит от времени жизни ткани или органа, в состав которых они входят

Ученые выделяют следующие периоды в этом жизненном цикле клетки у эукариот:

· интерфаза– период клеточного роста, во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

Интерфаза подразделяется на период G1-фазы, период S-фазы, период G2-фазы, период G0-фазы

· период клеточного деления, обозначается как М- фаза

Посмотрите на схему жизненного цикла клетки:

Периоды интерфазы:

Название периода

Процессы, происходящие в клетке

Пресинтетический период- G1фаза или фаза начального роста

Читайте также:
Атрофия - определение, типы, объяснение и тест

2n- набор хромосом (двойной),

2c- количество ДНК

синтез всех РНК, ферментов, белков, образование рибосом, синтез АТФ, образование одномембранных органелл клетки, рост клетки, создание запаса питательных веществ

Синтетический период- S-фаза

2n4c- количество хромосом осталось прежним, а количество ДНК увеличилось вдвое

происходит репликация ДНК клеточного ядра, построение второй хроматиды и формирование двухроматидных хромосом

Постсинтетический период- G2-фаза

происходит подготовка к митозу, интенсивный синтез белков, РНК, деление митохондрий и пропластид (предшественники всех типов пластид) у растений, синтез АТФ, удвоение массы цитоплазмы, увеличение массы ядра

Период функционирования клеток- фаза покоя G0

период клеточного цикла, в течение которого клетки находятся в состоянии покоя и не делятся, клетка как бы находится вне клеточного цикла.

Примеры: нервные клетки или клетки сердечной мышцы. Они вступают в состояние покоя при достижении зрелости (то есть когда закончена их дифференцировка).

Некоторые клетки могут выйти из этого состояния и начать вновь деление.

У меня есть дополнительная информация к этой части урока!

Прохождение клеткой фаз клеточного цикла регулируется специальными белками- циклинами.

Циклины получили своё название от того, что их концентрация в клетке периодически изменяется по мере прохождения клеток через клеточный цикл, достигая максимума на его определенных стадиях

Период деления клетки.

Деление клетки- процесс образования из родительской клетки двух и более дочерних клеток.

Обычно деление клетки – это малая часть большого клеточного цикла.

У эукариот есть два различных типа деления клетки:

1) непрямое деление:

· митоз- вегетативное деление, при котором каждая дочерняя клетка генетически идентична родительской клетке

· мейоз– репродуктивное клеточное деление, при котором количество хромосом в дочерней клетке снижается вдвое для производства половых клеток

2) прямое деление- амитоз, встречается относительно редко и проявляется в отмирающих тканях, а также в клетках опухолей

Для того чтобы понять, как происходят процессы деления клеток, необходимо знать строение хромосом, ведь именно они играют важнейшую роль в передаче наследственной информации от клетки к клетке.

Пройти тест и получить оценку можно после входа или регистрации

Строение хромосом в различные периоды клеточного цикла

Хромосомы- это структуры, в которых сосредоточена большая часть наследственной информации.

Они располагаются в ядре эукариотической клетки, состоят из молекулы ДНК, которая связана с белками-гистонами.

Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки- центромеров.

Центромера- специализированный участок ДНК, в районе которого в стадии профазы и метафазы деления клетки соединяются две сестринские хроматиды в митозе, а в мейозе гомологичные хромосомы в профазе и метафазе первого деления.

• центромера играет важную роль при расположении хромосом в виде метафазной пластинки в процессе расхождения дочерних хромосом к полюсам клетки, так как при помощи центромеры каждая хроматида соединяется с нитями веретена деления

• каждая центромера разделяет хромосому на два плеча

Строение хромосомы:

В жизненном цикле клетки, а конкретно в синтетический период происходит репликация ДНК (удвоение), именно с этого момента каждая хромосома состоит уже не из одной хроматиды, а из двух хроматид.

Хроматида (от греч. chroma – цвет, краска + eidos – вид)- это нить молекулы ДНК, соединенная с белками. Является частью хромосомы от момента ее дупликации до разделения на две дочерние хроматиды в анафазе митоза или анафазе второго деления мейоза.

Типы хромосом (морфологические типы):

акроцентрические (центромера расположена близко к концу хромосомы, и одно плечо значительно короче другого)

субметацентрические (центромера смещена от середины хромосом, и одно плечо короче другого)

метацентрические (центромера расположена в середине хромосомы, и плечи ее равны)

· телоцентрическая хромосома– хромосома, состоящая только из одного плеча и имеющая центромеру на самом краю; считается, что истинных телоцентрических хромосом не существует, т.к. даже маленькое второе плечо (визуально на хромосомных препаратах не выявляемое), по-видимому, всегда присутствует; часто такой вид хромосом используется в качестве синонима термина “акроцентрическая хромосома”

Гомологичные хромосомы (от греч. «гомос»- одинаковый).

Гомологичные хромосомы– парные хромосомы, одинаковые по форме, размерам и набору генов.

Их гены в соответствующих (идентичных) участках представляют собой аллельные гены.

Аллельные гены– различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом.

Но следует отметить, что гомологичные хромосомы не идентичны друг другу по следующим причинам:

• хотя гомологичные хромосомы имеют один и тот же набор генов, но этот набор может быть представлен различными формами одного и того же гена.

К примеру, у вас в гомологичных хромосомах есть участок с аллельными генами, которые определяют цвет ваших глаз. От матери в вашу гомологичную хромосому попал ген, отвечающий за карий цвет глаз- доминантный (сильный) признак, а от отца в хромосому попал ген, отвечающий за серый цвет глаз- это рецессивный (слабый) признак. Таким образом, аллельные гены отвечают за один признак- цвет глаз, но этот ген представлен в данном случае различными формами (доминантный и рецессивный, серый и карий).

Читайте также:
Амниотическая жидкость: Определение, функция и развитие

То есть ген один, а проявление его разное, поэтому мы говорим о гомологии, а не о идентичности.

• также в результате некоторых мутаций (удвоение хромосом, утраты ее частей и других причин) могут возникать гомологичные хромосомы, различающиеся наборами или расположением генов

Для каждого эукариотического организма характерен свой набор хромосом.

Количество, формы размеры хромосом у каждого организма различны.

К примеру, у человека всего 46 хромосом с 20-25 тыс. активных генов, а у коровы 60 хромосом с 22 тыс. активных генов.

А для проведения анализа и исследования всех хромосом клетки, ученые выделили такое понятие как кариотип.

Такой анализ имеет большое значение в медицинской практике, позволяя диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры.

Кариотип– совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида данного организма (индивидуальный кариотип).

В комплекс характеристик кариотипа входят:

• число хромосом, характерное для данного вида

• положение центромеры каждой хромосомы

• рисунок дифференциального окрашивания хромосом (специальный метод окрашивания, который позволяет по рисунку чередующихся поперечных темных и светлых полос на хромосоме идентифицировать конкретную хромосому или ее участок)

Рассмотрим кариотип человека:

По рисунку мы видим кариотип здорового человека, который включает 22 пары неполовых хромосом (аутосом) и пару половых хромосом (ХХ (женский пол) или ХY (мужской пол).

Хромосомы в кариотипе различаются размерами, формой, положением центромеры, рисунком окрашивания.

Каждая хромосома содержит определенный набор генов (например, в первой хромосоме хранятся гены A, B, C, D, во второй хромосоме – гены K, L, M, N). Каждый ген отвечает за свой признак (один ген отвечает за цвет глаз, другой за структуру волос, третий отвечает за проявление праворукости или леворукости и так далее.

Хромосомы также нумеруют: самая большая хромосома- первая, и далее, чем меньше хромосома, тем больший номер она получает.

На рисунке вы видите, что каждая хромосома состоит из двух сестринских хроматид (не забывайте, что каждая хроматида содержит 1 молекулу ДНК).

Поэтому получается, что хромосома одна, но она содержит 2 молекулы ДНК.

Помимо этого у диплоидного организма имеется двойной набор хромосом.

То есть у каждой хромосомы есть гомологичная ей хромосома, это тоже вы можете разглядеть на рисунке.

У человека имеются 22 пары гомологичных хромосом (плюс пара половых хромосом, которые негомологичны друг другу).

Один набор хромосом человек получает от матери, другой от отца.

Объединение этих наборов происходит при оплодотворении.

Половые клетки, образовавшиеся в результате мейоза, содержат только одну из двух гомологичных хромосом. Такой набор хромосом называется гаплоидный или одинарный (от греч. haploos- одиночный, простой и eidos- вид).

У человека путем мейоза образуются половые клетки (гаметы), каждая из них несет 23 хромосомы, а не 46, как в обычной соматической клетке.

В биологии обычно количество хромосом в клетке обозначается буквой n:

1n или просто одной буквой n- гаплоидный (одинарный) набор хромосом

2 n- диплоидный (двойной) набор хромосом

с– количество ДНК в хромосоме.

Количество хромосом в жизненном цикле разных организмов может быть разным.

У животных хромосомный набор диплоидный, а гаплоидны только гаметы.

Например, у хламидомонады, наоборот, гаплоидный набор хромосом на протяжении всего жизненного цикла, а диплоидна лишь зигота, которая сразу вступает в мейоз.

У некоторых растений наблюдаются сразу две фазы:

• у мхов преобладает гаметофит – он обладает гаплоидным набором хромосом

• у папоротников взрослого растения спорофита, наоборот, основная жизненная стадия представлена диплоидным набором хромосом

На спорофите путем митоза образуются клетки спорангия- органы, производящие споры, клетки которого имеют также диплоидный набор хромосом.

Сами споры имеют гаплоидный набор хромосом, благодаря мейозу.

Также у папоротников есть стадия заростка, который прорастает из споры, – значит, и у него гаплоидный набор хромосом.

У семенных растений самостоятельной гаплоидной стадии не существует.

Нарушение структуры хромосом.

Нарушение структуры хромосом происходит в результате спонтанных или спровоцированных изменений:

• генные мутации (изменения на молекулярном уровне)

• делеции- хромосомная перестройка, при которой происходит потеря участка хромосомы

• дупликации или удвоение- структурная хромосомная мутация, заключающаяся в удвоении участка хромосомы

• транслокации- тип хромосомных мутаций, при которых происходит перенос участка хромосомы на негомологичную хромосому, приводят к развитию лимфом, сарком, лейкемии, шизофрении

• инверсии- это поворот определенного участка хромосомы на 180°; является следствием двух одновременных разрывов в одной хромосоме

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: